30,892 research outputs found

    Methodological and empirical challenges in modelling residential location choices

    No full text
    The modelling of residential locations is a key element in land use and transport planning. There are significant empirical and methodological challenges inherent in such modelling, however, despite recent advances both in the availability of spatial datasets and in computational and choice modelling techniques. One of the most important of these challenges concerns spatial aggregation. The housing market is characterised by the fact that it offers spatially and functionally heterogeneous products; as a result, if residential alternatives are represented as aggregated spatial units (as in conventional residential location models), the variability of dwelling attributes is lost, which may limit the predictive ability and policy sensitivity of the model. This thesis presents a modelling framework for residential location choice that addresses three key challenges: (i) the development of models at the dwelling-unit level, (ii) the treatment of spatial structure effects in such dwelling-unit level models, and (iii) problems associated with estimation in such modelling frameworks in the absence of disaggregated dwelling unit supply data. The proposed framework is applied to the residential location choice context in London. Another important challenge in the modelling of residential locations is the choice set formation problem. Most models of residential location choices have been developed based on the assumption that households consider all available alternatives when they are making location choices. Due the high search costs associated with the housing market, however, and the limited capacity of households to process information, the validity of this assumption has been an on-going debate among researchers. There have been some attempts in the literature to incorporate the cognitive capacities of households within discrete choice models of residential location: for instance, by modelling households’ choice sets exogenously based on simplifying assumptions regarding their spatial search behaviour (e.g., an anchor-based search strategy) and their characteristics. By undertaking an empirical comparison of alternative models within the context of residential location choice in the Greater London area this thesis investigates the feasibility and practicality of applying deterministic choice set formation approaches to capture the underlying search process of households. The thesis also investigates the uncertainty of choice sets in residential location choice modelling and proposes a simplified probabilistic choice set formation approach to model choice sets and choices simultaneously. The dwelling-level modelling framework proposed in this research is practice-ready and can be used to estimate residential location choice models at the level of dwelling units without requiring independent and disaggregated dwelling supply data. The empirical comparison of alternative exogenous choice set formation approaches provides a guideline for modellers and land use planners to avoid inappropriate choice set formation approaches in practice. Finally, the proposed simplified choice set formation model can be applied to model the behaviour of households in online real estate environments.Open Acces

    Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior

    Full text link
    We introduce a new method for building classification models when we have prior knowledge of how the classes can be arranged in a hierarchy, based on how easily they can be distinguished. The new method uses a Bayesian form of the multinomial logit (MNL, a.k.a. ``softmax'') model, with a prior that introduces correlations between the parameters for classes that are nearby in the tree. We compare the performance on simulated data of the new method, the ordinary MNL model, and a model that uses the hierarchy in different way. We also test the new method on a document labelling problem, and find that it performs better than the other methods, particularly when the amount of training data is small

    Partitioned conditional generalized linear models for categorical data

    Get PDF
    In categorical data analysis, several regression models have been proposed for hierarchically-structured response variables, e.g. the nested logit model. But they have been formally defined for only two or three levels in the hierarchy. Here, we introduce the class of partitioned conditional generalized linear models (PCGLMs) defined for any numbers of levels. The hierarchical structure of these models is fully specified by a partition tree of categories. Using the genericity of the (r,F,Z) specification, the PCGLM can handle nominal, ordinal but also partially-ordered response variables.Comment: 25 pages, 13 figure

    Preference fusion and Condorcet's Paradox under uncertainty

    Get PDF
    Facing an unknown situation, a person may not be able to firmly elicit his/her preferences over different alternatives, so he/she tends to express uncertain preferences. Given a community of different persons expressing their preferences over certain alternatives under uncertainty, to get a collective representative opinion of the whole community, a preference fusion process is required. The aim of this work is to propose a preference fusion method that copes with uncertainty and escape from the Condorcet paradox. To model preferences under uncertainty, we propose to develop a model of preferences based on belief function theory that accurately describes and captures the uncertainty associated with individual or collective preferences. This work improves and extends the previous results. This work improves and extends the contribution presented in a previous work. The benefits of our contribution are twofold. On the one hand, we propose a qualitative and expressive preference modeling strategy based on belief-function theory which scales better with the number of sources. On the other hand, we propose an incremental distance-based algorithm (using Jousselme distance) for the construction of the collective preference order to avoid the Condorcet Paradox.Comment: International Conference on Information Fusion, Jul 2017, Xi'an, Chin

    {HyGen}: {G}enerating Random Graphs with Hyperbolic Communities

    No full text
    corecore