4,125 research outputs found

    Structured Named Entities in two distinct press corpora: Contemporary Broadcast News and Old Newspapers

    No full text
    International audienceThis paper compares the reference annotation of structured named entities in two corpora with different origins and properties. It ad- dresses two questions linked to such a comparison. On the one hand, what specific issues were raised by reusing the same annotation scheme on a corpus that differs from the first in terms of media and that predates it by more than a century? On the other hand, what contrasts were observed in the resulting annotations across the two corpora

    Article Segmentation in Digitised Newspapers

    Get PDF
    Digitisation projects preserve and make available vast quantities of historical text. Among these, newspapers are an invaluable resource for the study of human culture and history. Article segmentation identifies each region in a digitised newspaper page that contains an article. Digital humanities, information retrieval (IR), and natural language processing (NLP) applications over digitised archives improve access to text and allow automatic information extraction. The lack of article segmentation impedes these applications. We contribute a thorough review of the existing approaches to article segmentation. Our analysis reveals divergent interpretations of the task, and inconsistent and often ambiguously defined evaluation metrics, making comparisons between systems challenging. We solve these issues by contributing a detailed task definition that examines the nuances and intricacies of article segmentation that are not immediately apparent. We provide practical guidelines on handling borderline cases and devise a new evaluation framework that allows insightful comparison of existing and future approaches. Our review also reveals that the lack of large datasets hinders meaningful evaluation and limits machine learning approaches. We solve these problems by contributing a distant supervision method for generating large datasets for article segmentation. We manually annotate a portion of our dataset and show that our method produces article segmentations over characters nearly as well as costly human annotators. We reimplement the seminal textual approach to article segmentation (Aiello and Pegoretti, 2006) and show that it does not generalise well when evaluated on a large dataset. We contribute a framework for textual article segmentation that divides the task into two distinct phases: block representation and clustering. We propose several techniques for block representation and contribute a novel highly-compressed semantic representation called similarity embeddings. We evaluate and compare different clustering techniques, and innovatively apply label propagation (Zhu and Ghahramani, 2002) to spread headline labels to similar blocks. Our similarity embeddings and label propagation approach substantially outperforms Aiello and Pegoretti but still falls short of human performance. Exploring visual approaches to article segmentation, we reimplement and analyse the state-of-the-art Bansal et al. (2014) approach. We contribute an innovative 2D Markov model approach that captures reading order dependencies and reduces the structured labelling problem to a Markov chain that we decode with Viterbi (1967). Our approach substantially outperforms Bansal et al., achieves accuracy as good as human annotators, and establishes a new state of the art in article segmentation. Our task definition, evaluation framework, and distant supervision dataset will encourage progress in the task of article segmentation. Our state-of-the-art textual and visual approaches will allow sophisticated IR and NLP applications over digitised newspaper archives, supporting research in the digital humanities
    corecore