10,788 research outputs found

    Forecasting Financial Volatility Using Nested Monte Carlo Expression Discovery

    Get PDF
    We are interested in discovering expressions for financial prediction using Nested Monte Carlo Search and Genetic Programming. Both methods are applied to learn from financial time series to generate non linear functions for market volatility prediction. The input data, that is a series of daily prices of European S&P500 index, is filtered and sampled in order to improve the training process. Using some assessment metrics, the best generated models given by both approaches for each training sub sample, are evaluated and compared. Results show that Nested Monte Carlo is able to generate better forecasting models than Genetic Programming for the majority of learning samples

    A Framework for Monte Carlo based Multiple Testing

    Full text link
    We are concerned with a situation in which we would like to test multiple hypotheses with tests whose p-values cannot be computed explicitly but can be approximated using Monte Carlo simulation. This scenario occurs widely in practice. We are interested in obtaining the same rejections and non-rejections as the ones obtained if the p-values for all hypotheses had been available. The present article introduces a framework for this scenario by providing a generic algorithm for a general multiple testing procedure. We establish conditions which guarantee that the rejections and non-rejections obtained through Monte Carlo simulations are identical to the ones obtained with the p-values. Our framework is applicable to a general class of step-up and step-down procedures which includes many established multiple testing corrections such as the ones of Bonferroni, Holm, Sidak, Hochberg or Benjamini-Hochberg. Moreover, we show how to use our framework to improve algorithms available in the literature in such a way as to yield theoretical guarantees on their results. These modifications can easily be implemented in practice and lead to a particular way of reporting multiple testing results as three sets together with an error bound on their correctness, demonstrated exemplarily using a real biological dataset

    Getting started in probabilistic graphical models

    Get PDF
    Probabilistic graphical models (PGMs) have become a popular tool for computational analysis of biological data in a variety of domains. But, what exactly are they and how do they work? How can we use PGMs to discover patterns that are biologically relevant? And to what extent can PGMs help us formulate new hypotheses that are testable at the bench? This note sketches out some answers and illustrates the main ideas behind the statistical approach to biological pattern discovery.Comment: 12 pages, 1 figur

    On Nesting Monte Carlo Estimators

    Full text link
    Many problems in machine learning and statistics involve nested expectations and thus do not permit conventional Monte Carlo (MC) estimation. For such problems, one must nest estimators, such that terms in an outer estimator themselves involve calculation of a separate, nested, estimation. We investigate the statistical implications of nesting MC estimators, including cases of multiple levels of nesting, and establish the conditions under which they converge. We derive corresponding rates of convergence and provide empirical evidence that these rates are observed in practice. We further establish a number of pitfalls that can arise from naive nesting of MC estimators, provide guidelines about how these can be avoided, and lay out novel methods for reformulating certain classes of nested expectation problems into single expectations, leading to improved convergence rates. We demonstrate the applicability of our work by using our results to develop a new estimator for discrete Bayesian experimental design problems and derive error bounds for a class of variational objectives.Comment: To appear at International Conference on Machine Learning 201

    Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

    Full text link
    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g. wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network.Comment: 24 pages, 4 figures, 6 table
    corecore