1,445 research outputs found

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Hardware compilation of deep neural networks: an overview

    Get PDF
    Deploying a deep neural network model on a reconfigurable platform, such as an FPGA, is challenging due to the enormous design spaces of both network models and hardware design. A neural network model has various layer types, connection patterns and data representations, and the corresponding implementation can be customised with different architectural and modular parameters. Rather than manually exploring this design space, it is more effective to automate optimisation throughout an end-to-end compilation process. This paper provides an overview of recent literature proposing novel approaches to achieve this aim. We organise materials to mirror a typical compilation flow: front end, platform-independent optimisation and back end. Design templates for neural network accelerators are studied with a specific focus on their derivation methodologies. We also review previous work on network compilation and optimisation for other hardware platforms to gain inspiration regarding FPGA implementation. Finally, we propose some future directions for related research

    GASPRNG: GPU accelerated scalable parallel random number generator library

    Get PDF
    AbstractGraphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications.Program summaryProgram title: GASPRNGCatalogue identifier: AEOI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen’s University, Belfast, N. IrelandLicensing provisions: UTK license.No. of lines in distributed program, including test data, etc.: 167900No. of bytes in distributed program, including test data, etc.: 1422058Distribution format: tar.gzProgramming language: C and CUDA.Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070).Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX.Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives.RAM: 512 MB∼ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory)Classification: 4.13, 6.5.Nature of problem:Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs).Solution method:Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs.Running time:The tests provided take a few minutes to run

    Learning for Optimization with Virtual Savant

    Get PDF
    Optimization problems arising in multiple fields of study demand efficient algorithms that can exploit modern parallel computing platforms. The remarkable development of machine learning offers an opportunity to incorporate learning into optimization algorithms to efficiently solve large and complex problems. This thesis explores Virtual Savant, a paradigm that combines machine learning and parallel computing to solve optimization problems. Virtual Savant is inspired in the Savant Syndrome, a mental condition where patients excel at a specific ability far above the average. In analogy to the Savant Syndrome, Virtual Savant extracts patterns from previously-solved instances to learn how to solve a given optimization problem in a massively-parallel fashion. In this thesis, Virtual Savant is applied to three optimization problems related to software engineering, task scheduling, and public transportation. The efficacy of Virtual Savant is evaluated in different computing platforms and the experimental results are compared against exact and approximate solutions for both synthetic and realistic instances of the studied problems. Results show that Virtual Savant can find accurate solutions, effectively scale in the problem dimension, and take advantage of the availability of multiple computing resources.Los problemas de optimización que surgen en múltiples campos de estudio demandan algoritmos eficientes que puedan explotar las plataformas modernas de computación paralela. El notable desarrollo del aprendizaje automático ofrece la oportunidad de incorporar el aprendizaje en algoritmos de optimización para resolver problemas complejos y de grandes dimensiones de manera eficiente. Esta tesis explora Savant Virtual, un paradigma que combina aprendizaje automático y computación paralela para resolver problemas de optimización. Savant Virtual está inspirado en el Sı́ndrome de Savant, una condición mental en la que los pacientes se destacan en una habilidad especı́fica muy por encima del promedio. En analogı́a con el sı́ndrome de Savant, Savant Virtual extrae patrones de instancias previamente resueltas para aprender a resolver un determinado problema de optimización de forma masivamente paralela. En esta tesis, Savant Virtual se aplica a tres problemas de optimización relacionados con la ingenierı́a de software, la planificación de tareas y el transporte público. La eficacia de Savant Virtual se evalúa en diferentes plataformas informáticas y los resultados se comparan con soluciones exactas y aproximadas para instancias tanto sintéticas como realistas de los problemas estudiados. Los resultados muestran que Savant Virtual puede encontrar soluciones precisas, escalar eficazmente en la dimensión del problema y aprovechar la disponibilidad de múltiples recursos de cómputo.Fundación Carolina Agencia Nacional de Investigación e Innovación (ANII, Uruguay) Universidad de Cádiz Universidad de la Repúblic

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    OpenFPM: A scalable environment for particle and particle-mesh codes on parallel computers

    Get PDF
    Scalable and efficient numerical simulations continue to gain importance, as computation is firmly established tool of discovery, together with theory and experiment. Meanwhile, the performance of computing hardware grows with increasing heterogeneous hardware, enabling simulations of ever more complex models. However, efficiently implementing scalable codes on heterogeneous, distributed hardware systems becomes the bottleneck. This bottleneck can be alleviated by intermediate software layers that provide higher-level abstractions closer to the problem domain, hence allowing the computational scientist to focus on the simulation. Here, we present OpenFPM, an open and scalable framework that provides an abstraction layer for numerical simulations using particles and/or meshes. OpenFPM provides transparent and scalable infrastructure for shared-memory and distributed-memory implementations of particles-only and hybrid particle-mesh simulations of both discrete and continuous models, as well as non-simulation codes. This infrastructure is complemented with frequently used numerical routines, as well as interfaces to third-party libraries. This thesis will present the architecture and design of OpenFPM, detail the underlying abstractions, and benchmark the framework in applications ranging from Smoothed-Particle Hydrodynamics (SPH) to Molecular Dynamics (MD), Discrete Element Methods (DEM), Vortex Methods, stencil codes, high-dimensional Monte Carlo sampling (CMA-ES), and Reaction-Diffusion solvers, comparing it to the current state of the art and existing software frameworks
    corecore