6 research outputs found

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Addressing Spectrum Congestion by Spectrally-Cooperative Radar design

    Get PDF
    This dissertation attempts to address a significant challenge that is encountered by the users of the Radio Frequency (RF) Spectrum in recent years. The challenge arises due to the need for greater RF spectrum by wireless communication industries such as mobile telephony, cable/satellite and wireless internet as a result of growing con-sumer base and demands. As such, it has led to the issue of spectrum congestion as radar systems have traditionally maintain the largest share of the RF spectrum. To resolve the spectrum congestion problem, it has become even necessary for users from both radar and communication systems to coexist within a finite spectrum allocation. However, this then leads to other problems such as the increased likelihood of mutual interference experienced by all systems that are coexisting within the finite spectrum.. In order to address this challenge, the dissertation will seek to resolve it via a two-step approach that are described as follows. For the first step of this approach, it will present a structured and meticulous approach to design a sparse spectrum allocation optimization scheme that will lead to the release of valuable spectrum previously allocated to radar applications for reallocation to other players such as the wireless video-on-demand and telecommunication industries while maintaining the range resolution performance of these radar applications. This sparse bandwidth allocation scheme is implemented using an optimization process utilizing the Marginal Fisher information (MFI) measure as the main metric for optimization. Although the MFI approach belongs to the class of greedy optimization methods that cannot guarantee global convergence, the results obtained indicated that this approach is able to produce a locally optimal solution. For the second step of this approach, it will present on the design of a spectral efficient waveform that can be used to ensure that the allocated spectrum limits will not be violated due to poor spectral emission containment. The design concept of this waveform is based on the joint implementation of the first and higher orders of the Poly-phase coded Frequency Modulated (PCFM) waveform that expands previous research on first order PCFM waveform. As any waveform generated using the PCFM framework possesses good spectral containment and is amenable to high power transmit operations such as radar due to its constant modulus property, thus the combined-orders of PCFM waveform is a very suitable candidate that can be used in conjunction with the sparse bandwidth allocation scheme in the first step for any radar application such that the waveform will further mitigate the issue of interference experienced by other users coexisting within the same band

    Nested Array Sensor With Grating Lobe Suppression and Arbitrary Transmit–Receive Beampattern Synthesis

    No full text

    Acoustic tubes with maximal and minimal resonance frequencies

    Full text link
    corecore