220 research outputs found

    Development of microstructural and morphological cortical profiles in the neonatal brain

    Get PDF
    Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period (37-44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity (morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were consistent and symmetric, and corresponded to known functional distinctions, including sensory-motor, limbic, and association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar. Network strength was associated with age: Within-network similarity increased over age suggesting emerging network distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin, the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative reference to investigate atypical early brain development

    Application and potential of artificial intelligence in neonatal medicine

    Get PDF
    Neonatal care is becoming increasingly complex with large amounts of rich, routinely recorded physiological, diagnostic and outcome data. Artificial intelligence (AI) has the potential to harness this vast quantity and range of information and become a powerful tool to support clinical decision making, personalised care, precise prognostics, and enhance patient safety. Current AI approaches in neonatal medicine include tools for disease prediction and risk stratification, neurological diagnostic support and novel image recognition technologies. Key to the integration of AI in neonatal medicine is the understanding of its limitations and a standardised critical appraisal of AI tools. Barriers and challenges to this include the quality of datasets used, performance assessment, and appropriate external validation and clinical impact studies. Improving digital literacy amongst healthcare professionals and cross-disciplinary collaborations are needed to harness the full potential of AI to help take the next significant steps in improving neonatal outcomes for high-risk infants

    Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions

    Get PDF
    Morphometric similarity networks (MSNs) estimate organization of the cortex as a biologically meaningful set of similarities between anatomical features at the macro-and microstructural level, derived from multiple structural MRI (sMRI) sequences. These networks are clinically relevant, predicting 40% variance in IQ. However, the sequences required (T1w, T2w, DWI) to produce these networks are longer acquisitions, less feasible in some populations. Thus, estimating MSNs using features from T1w sMRI is attractive to clinical and developmental neuroscience. We studied whether reduced-feature approaches approximate the original MSN model as a potential tool to investigate brain structure. In a large, homogenous dataset of healthy young adults (from the Human Connectome Project, HCP), we extended previous investigations of reduced-feature MSNs by comparing not only T1w-derived networks, but also additional MSNs generated with fewer MR sequences, to their full acquisition counterparts. We produce MSNs that are highly similar at the edge level to those generated with multimodal imaging; however, the nodal topology of the networks differed. These networks had limited predictive validity of generalized cognitive ability. Overall, when multimodal imaging is not available or appropriate, T1w-restricted MSN construction is feasible, provides an appropriate estimate of the MSN, and could be a useful approach to examine outcomes in future studies

    The Developing Human Connectome Project Neonatal Data Release

    Get PDF
    The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed

    Role of perinatal inflammation in preterm brain injury

    Get PDF
    Perinatal inflammation is associated with an increased risk of brain injury and neurodevelopmental impairment in preterm infants but the immune mediators driving this association are not well understood. This PhD thesis seeks to further characterise the inflammatory response associated with preterm birth, describe the relationship between perinatal inflammation and white matter development and explore the effect of specific inflammation-associated proteins on the development of human cortical neurons derived from induced pluripotent stem cells (iPSCs). In the first study, I investigated the inflammatory profile at birth in 55 very preterm infants, compared to 59 term-born controls and then used this profile to predict exposure to intrauterine inflammation in the preterm group. Preterm infants had a distinct pro-inflammatory profile in umbilical cord blood at delivery when compared to term-born controls and IL-8 was found to be the strongest predictor of intrauterine inflammation. In the second study, I investigated the association between specific inflammation-associated proteins and white matter microstructure in 71 very preterm infants using structural MRI and diffusion-weighted imaging of the brain. Elevated IL-8 in the first week of life was associated with white matter dysmaturation at term-equivalent age. Following this discovery, I investigated the effect of IL-8 on the maturation and morphology of iPSC-derived cortical neurons and found that exposure was associated with impaired neurite outgrowth. This thesis provides further evidence to support the role of inflammation in the aetiology of preterm brain injury and suggests that IL-8 dysregulation may link systemic inflammation with atypical cortical development and white matter disease in preterm infants

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth

    Clinically-Feasible Brain Morphometric Similarity Network Construction Approaches with Restricted Magnetic Resonance Imaging Acquisitions and their Relationship with Cognition

    Get PDF
    Morphometric Similarity Networks (MSNs) estimate structural 'connectivity' as a biologically meaningful set of statistical similarities between cyto-architectural features derived in-vivo from multiple MRI sequences. These networks have shown to be clinically relevant, predicting 40% variance in IQ. However, the sequences required (T1w and T2w 3D anatomical, DWI) to produce these networks typically have long acquisition times, which are less feasible in some populations. Thus, estimating MSNs using features from only a T1w MRI is attractive to both clinical and developmental neuroscience. We aimed to determine whether reduced-feature approaches approximate the original MSN model as a potential tool to investigate brain structure. Using Human Connectome Project data, we extended previous investigations of reduced-feature MSNs by comparing not only T1w-derived networks but additional MSNs generated with fewer MR sequences to their full acquisition counterparts. We produce MSNs which are highly similar at the edge-level, to those generated with multi-modal imaging. We also find that, regardless of the number of features, these networks have limited predictive validity of generalised cognitive ability scores in contrast to previous research. Overall, settings in which multi-modal imaging is not available or clinically/developmentally appropriate, T1w-restricted MSN construction provides a valid estimate of the MSN

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth
    • …
    corecore