340 research outputs found

    Tree species classification from AVIRIS-NG hyperspectral imagery using convolutional neural networks

    Full text link
    This study focuses on the automatic classification of tree species using a three-dimensional convolutional neural network (CNN) based on field-sampled ground reference data, a LiDAR point cloud and AVIRIS-NG airborne hyperspectral remote sensing imagery with 2 m spatial resolution acquired on 14 June 2021. I created a tree species map for my 10.4 km2 study area which is located in the Jurapark Aargau, a Swiss regional park of national interest. I collected ground reference data for six major tree species present in the study area (Quercus robur, Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Tilia platyphyllos, total n = 331). To match the sampled ground reference to the AVIRIS-NG 425 band hyperspectral imagery, I delineated individual tree crowns (ITCs) from a canopy height model (CHM) based on LiDAR point cloud data. After matching the ground reference data to the hyperspectral imagery, I split the extracted image patches to training, validation, and testing subsets. The amount of training, validation and testing data was increased by applying image augmentation through rotating, flipping, and changing the brightness of the original input data. The classifier is a CNN trained on the first 32 principal components (PC’s) extracted from AVIRIS-NG data. The CNN uses image patches of 5 × 5 pixels and consists of two convolutional layers and two fully connected layers. The latter of which is responsible for the final classification using the softmax activation function. The results show that the CNN classifier outperforms comparable conventional classification methods. The CNN model is able to predict the correct tree species with an overall accuracy of 70% and an average F1-score of 0.67. A random forest classifier reached an overall accuracy of 67% and an average F1-score of 0.61 while a support-vector machine classified the tree species with an overall accuracy of 66% and an average F1-score of 0.62. This work highlights that CNNs based on imaging spectroscopy data can produce highly accurate high resolution tree species distribution maps based on a relatively small set of training data thanks to the high dimensionality of hyperspectral images and the ability of CNNs to utilize spatial and spectral features of the data. These maps provide valuable input for modelling the distributions of other plant and animal species and ecosystem services. In addition, this work illustrates the importance of direct collaboration with environmental practitioners to ensure user needs are met. This aspect will be evaluated further in future work by assessing how these products are used by environmental practitioners and as input for modelling purposes

    Hydrocarbon quantification using neural networks and deep learning based hyperspectral unmixing

    Get PDF
    Hydrocarbon (HC) spills are a global issue, which can seriously impact human life and the environment, therefore early identification and remedial measures taken at an early stage are important. Thus, current research efforts aim at remotely quantifying incipient quantities of HC mixed with soils. The increased spectral and spatial resolution of hyperspectral sensors has opened ground-breaking perspectives in many industries including remote inspection of large areas and the environment. The use of subpixel detection algorithms, and in particular the use of the mixture models, has been identified as a future advance that needs to be incorporated in remote sensing. However, there are some challenging tasks since the spectral signatures of the targets of interest may not be immediately available. Moreover, real time processing and analysis is required to support fast decision-making. Progressing in this direction, this thesis pioneers and researches novel methodologies for HC quantification capable of exceeding the limitations of existing systems in terms of reduced cost and processing time with improved accuracy. Therefore the goal of this research is to develop, implement and test different methods for improving HC detection and quantification using spectral unmixing and machine learning. An efficient hybrid switch method employing neural networks and hyperspectral is proposed and investigated. This robust method switches between state of the art hyperspectral unmixing linear and nonlinear models, respectively. This procedure is well suited for the quantification of small quantities of substances within a pixel with high accuracy as the most appropriate model is employed. Central to the proposed approach is a novel method for extracting parameters to characterise the non-linearity of the data. These parameters are fed into a feedforward neural network which decides in a pixel by pixel fashion which model is more suitable. The quantification process is fully automated by applying further classification techniques to the acquired hyperspectral images. A deep learning neural network model is designed for the quantification of HC quantities mixed with soils. A three-term backpropagation algorithm with dropout is proposed to avoid overfitting and reduce the computational complexity of the model. The above methods have been evaluated using classical repository datasets from the literature and a laboratory controlled dataset. For that, an experimental procedure has been designed to produce a labelled dataset. The data was obtained by mixing and homogenizing different soil types with HC substances, respectively and measuring the reflectance with a hyperspectral sensor. Findings from the research study reveal that the two proposed models have high performance, they are suitable for the detection and quantification of HC mixed with soils, and surpass existing methods. Improvements in sensitivity, accuracy, computational time are achieved. Thus, the proposed approaches can be used to detect HC spills at an early stage in order to mitigate significant pollution from the spill areas

    Training Methods of Multi-label Prediction Classifiers for Hyperspectral Remote Sensing Images

    Full text link
    With their combined spectral depth and geometric resolution, hyperspectral remote sensing images embed a wealth of complex, non-linear information that challenges traditional computer vision techniques. Yet, deep learning methods known for their representation learning capabilities prove more suitable for handling such complexities. Unlike applications that focus on single-label, pixel-level classification methods for hyperspectral remote sensing images, we propose a multi-label, patch-level classification method based on a two-component deep-learning network. We use patches of reduced spatial dimension and a complete spectral depth extracted from the remote sensing images. Additionally, we investigate three training schemes for our network: Iterative, Joint, and Cascade. Experiments suggest that the Joint scheme is the best-performing scheme; however, its application requires an expensive search for the best weight combination of the loss constituents. The Iterative scheme enables the sharing of features between the two parts of the network at the early stages of training. It performs better on complex data with multi-labels. Further experiments showed that methods designed with different architectures performed well when trained on patches extracted and labeled according to our sampling method.Comment: 1- Added references. 2- updated methodology figure and added new figures to visualise the different training schemes and 3- Correcting typos 4- Revised introduction, no change in results or discussio
    • …
    corecore