1,108 research outputs found

    Logics of Formal Inconsistency enriched with replacement: an algebraic and modal account

    Get PDF
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold for several systems of the hierarchy of paraconsistent logics known as Logics of Formal Inconsistency (LFIs). Because of this, these logics are uniquely characterized by semantics of non-deterministic kind. This paper offers a solution for two open problems in the domain of paraconsistency, in particular connected to algebraization of LFIs, by obtaining several LFIs weaker than C1, each of one is algebraizable in the standard Lindenbaum-Tarski's sense by a suitable variety of Boolean algebras extended with operators. This means that such LFIs satisfy the replacement property. The weakest LFI satisfying replacement presented here is called RmbC, which is obtained from the basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in addition a neighborhood semantics is defined for such systems. It is shown that RmbC can be defined within the minimal bimodal non-normal logic E+E defined by the fusion of the non-normal modal logic E with itself. Finally, the framework is extended to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be sound and complete w.r.t. BALFI semantics

    Many-valued coalgebraic logic over semi-primal varieties

    Full text link
    We study many-valued coalgebraic logics with semi-primal algebras of truth-degrees. We provide a systematic way to lift endofunctors defined on the variety of Boolean algebras to endofunctors on the variety generated by a semi-primal algebra. We show that this can be extended to a technique to lift classical coalgebraic logics to many-valued ones, and that (one-step) completeness and expressivity are preserved under this lifting. For specific classes of endofunctors, we also describe how to obtain an axiomatization of the lifted many-valued logic directly from an axiomatization of the original classical one. In particular, we apply all of these techniques to classical modal logic

    Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

    Get PDF
    We study many-valued coalgebraic logics with primal algebras of truth-degrees. We describe a way to lift algebraic semantics of classical coalgebraic logics, given by an endofunctor on the variety of Boolean algebras, to this many-valued setting, and we show that many important properties of the original logic are inherited by its lifting. Then, we deal with the problem of obtaining a concrete axiomatic presentation of the variety of algebras for this lifted logic, given that we know one for the original one. We solve this problem for a class of presentations which behaves well with respect to a lattice structure on the algebra of truth-degrees

    Fractional-valued modal logic and soft bilateralism

    Get PDF
    In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic K, whose values lie in the closed interval [0, 1] of rational numbers. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of K. Specifically, we introduce well-behaved hypersequent calculi for the deontic logic D and the non-normal modal logics E and M and thoroughly investigate their structural properties
    corecore