326 research outputs found

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/Ļµc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    Routing Unmanned Aerial Vehicles While Considering General Restricted Operating Zones

    Get PDF
    U.S. military forces employ unmanned aerial vehicles (UAVs) to conduct intelligence-gathering missions worldwide. For a typical mission, commanders may task UAV operators to gather imagery on 100 or more sites or targets. UAV operators must quickly prepare mission plans that meet the needs of their commanders while dealing with real-world constraints such as time windows, site priorities, imagery requirements, UAVs with different capabilities (i.e. imagery equipment, speed, and range), and UAVs departing from different bases. Previous AFIT research provided the UAV Battlelab with a tool, AFIT Router, for generating high-quality routes to aid mission planning. This research enhances the AFIT Router by providing the ability to define general restricted operating zones and to build routes that consider these zones. This research also examines and compares a probabilistic tabu search heuristic and two reactive tabu search heuristics for solving vehicle routing problems

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Design of Heuristic Algorithms for Hard Optimization

    Get PDF
    This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    The bi-objective travelling salesman problem with profits and its connection to computer networks.

    Get PDF
    This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what ā€œprofitā€ this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances
    • ā€¦
    corecore