17,166 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Strengthening Organizations to Mobilize Californians: Lessons Learned from a Major Initiative to Build the Capacity of Civic Engagement Nonprofits

    Get PDF
    From 2008 to 2010, twenty-seven community organizing nonprofits in California took part in an unusual and ambitious statewide initiative, Strengthening Organizations to Mobilize Californians (the "Initiative"). Funded by three leading foundations -- The James Irvine Foundation, The William and Flora Hewlett Foundation and David and Lucile Packard Foundation -- the Initiative sought to help nonprofits strengthen their organizations by focusing on such key areas as leadership, decision-making, communication and fundraising.The premise was that stronger organizations could better meet the needs of communities and give their residents more of a voice in civic life. Thus, through the Initiative each foundation sought to support its broader purpose, from improving educational opportunities and access to health care to increasing civic engagement and reforming California's governance system to better reflect the state's diversity.The Initiative specifically explored how different approaches to working with organizations supported change. How did peer exchanges compare with trainings that relied more on expert input? Would convenings enable the kind of networking that organizations need to develop and build momentum for their ideas? How much additional benefit would nonprofits derive from additional coaching time? Findings from the Initiative hold implications for other philanthropic staff members who seek to design, implement and improve capacity building.The insights and lessons presented in this report were distilled through an assessment process that included:A review of data gathered through Event Feedback Forms completed by participants at each activity and event over the course of the InitiativeA post-Initiative survey administered online to all participating organizations, with a response rate of 39 individuals representing 24 out of 27 organizations (89%)Two focus groups attended by 10 executive directors and senior staff from participating organizationsReflective conversations with the foundation partner

    Against Conventional Wisdom

    Get PDF
    Conventional wisdom has it that truth is always evaluated using our actual linguistic conventions, even when considering counterfactual scenarios in which different conventions are adopted. This principle has been invoked in a number of philosophical arguments, including Kripke’s defense of the necessity of identity and Lewy’s objection to modal conventionalism. But it is false. It fails in the presence of what Einheuser (2006) calls c-monsters, or convention-shifting expressions (on analogy with Kaplan’s monsters, or context-shifting expressions). We show that c-monsters naturally arise in contexts, such as metalinguistic negotiations, where speakers entertain alternative conventions. We develop an expressivist theory—inspired by Barker (2002) and MacFarlane (2016) on vague predications and Einheuser (2006) on counterconventionals—to model these shifts in convention. Using this framework, we reassess the philosophical arguments that invoked the conventional wisdom

    Origin of life in a digital microcosm

    Full text link
    While all organisms on Earth descend from a common ancestor, there is no consensus on whether the origin of this ancestral self-replicator was a one-off event or whether it was only the final survivor of multiple origins. Here we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analyzed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We studied the differential ability of replicators to take over the population when competed against each other (akin to a primordial-soup model of biogenesis) and found that the probability of a self-replicator out-competing the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life.Comment: 20 pages, 7 figures. To appear in special issue of Philosophical Transactions of the Royal Society A: Re-Conceptualizing the Origins of Life from a Physical Sciences Perspectiv

    Building and using semiparametric tolerance regions for parametric multinomial models

    Full text link
    We introduce a semiparametric ``tubular neighborhood'' of a parametric model in the multinomial setting. It consists of all multinomial distributions lying in a distance-based neighborhood of the parametric model of interest. Fitting such a tubular model allows one to use a parametric model while treating it as an approximation to the true distribution. In this paper, the Kullback--Leibler distance is used to build the tubular region. Based on this idea one can define the distance between the true multinomial distribution and the parametric model to be the index of fit. The paper develops a likelihood ratio test procedure for testing the magnitude of the index. A semiparametric bootstrap method is implemented to better approximate the distribution of the LRT statistic. The approximation permits more accurate construction of a lower confidence limit for the model fitting index.Comment: Published in at http://dx.doi.org/10.1214/08-AOS603 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore