2,845 research outputs found

    Overlap Matrix Completion for Predicting Drug-Associated Indications

    Get PDF
    Identification of potential drug-associated indications is critical for either approved or novel drugs in drug repositioning. Current computational methods based on drug similarity and disease similarity have been developed to predict drug-disease associations. When more reliable drug- or disease-related information becomes available and is integrated, the prediction precision can be continuously improved. However, it is a challenging problem to effectively incorporate multiple types of prior information, representing different characteristics of drugs and diseases, to identify promising drug-disease associations. In this study, we propose an overlap matrix completion (OMC) for bilayer networks (OMC2) and tri-layer networks (OMC3) to predict potential drug-associated indications, respectively. OMC is able to efficiently exploit the underlying low-rank structures of the drug-disease association matrices. In OMC2, first of all, we construct one bilayer network from drug-side aspect and one from disease-side aspect, and then obtain their corresponding block adjacency matrices. We then propose the OMC2 algorithm to fill out the values of the missing entries in these two adjacency matrices, and predict the scores of unknown drug-disease pairs. Moreover, we further extend OMC2 to OMC3 to handle tri-layer networks. Computational experiments on various datasets indicate that our OMC methods can effectively predict the potential drug-disease associations. Compared with the other state-of-the-art approaches, our methods yield higher prediction accuracy in 10-fold cross-validation and de novo experiments. In addition, case studies also confirm the effectiveness of our methods in identifying promising indications for existing drugs in practical applications

    On multi-view learning with additive models

    Get PDF
    In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multi-view transductive learning. In this work we introduce and study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed on both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS202 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A message passing framework with multiple data integration for miRNA-disease association prediction

    Get PDF
    Micro RNA or miRNA is a highly conserved class of non-coding RNA that plays an important role in many diseases. Identifying miRNA-disease associations can pave the way for better clinical diagnosis and finding potential drug targets. We propose a biologically-motivated data-driven approach for the miRNA-disease association prediction, which overcomes the data scarcity problem by exploiting information from multiple data sources. The key idea is to enrich the existing miRNA/disease-protein-coding gene (PCG) associations via a message passing framework, followed by the use of disease ontology information for further feature filtering. The enriched and filtered PCG associations are then used to construct the inter-connected miRNA-PCG-disease network to train a structural deep network embedding (SDNE) model. Finally, the pre-trained embeddings and the biologically relevant features from the miRNA family and disease semantic similarity are concatenated to form the pair input representations to a Random Forest classifier whose task is to predict the miRNA-disease association probabilities. We present large-scale comparative experiments, ablation, and case studies to showcase our approach’s superiority. Besides, we make the model prediction results for 1618 miRNAs and 3679 diseases, along with all related information, publicly available at http://software.mpm.leibniz-ai-lab.de/ to foster assessments and future adoption

    Improved genome-scale multitarget virtual screening via a novel collaborative filtering approach to cold-start problem

    Full text link
    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multitarget virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design

    Recommender systems in antiviral drug discovery

    Get PDF
    Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: Collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery
    • …
    corecore