5,000 research outputs found

    Hom complexes and homotopy theory in the category of graphs

    Get PDF
    We investigate a notion of ×\times-homotopy of graph maps that is based on the internal hom associated to the categorical product in the category of graphs. It is shown that graph ×\times-homotopy is characterized by the topological properties of the \Hom complex, a functorial way to assign a poset (and hence topological space) to a pair of graphs; \Hom complexes were introduced by Lov\'{a}sz and further studied by Babson and Kozlov to give topological bounds on chromatic number. Along the way, we also establish some structural properties of \Hom complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. Graph ×\times-homotopy naturally leads to a notion of homotopy equivalence which we show has several equivalent characterizations. We apply the notions of ×\times-homotopy equivalence to the class of dismantlable graphs to get a list of conditions that again characterize these. We end with a discussion of graph homotopies arising from other internal homs, including the construction of `AA-theory' associated to the cartesian product in the category of reflexive graphs.Comment: 28 pages, 13 figures, final version, to be published in European J. Com

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n−2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea
    • …
    corecore