40 research outputs found

    Graph Coloring Problems and Group Connectivity

    Get PDF
    1. Group connectivity. Let A be an abelian group and let iA(G) be the smallest positive integer m such that Lm(G) is A-connected. A path P of G is a normal divalent path if all internal vertices of P are of degree 2 in G and if |E(P)|= 2, then P is not in a 3-cycle of G. Let l(G) = max{lcub}m : G has a normal divalent path of length m{rcub}. We obtain the following result. (i) If |A| ≥ 4, then iA( G) ≤ l(G). (ii) If | A| ≥ 4, then iA(G) ≤ |V(G)| -- Delta(G). (iii) Suppose that |A| ≥ 4 and d = diam( G). If d ≤ |A| -- 1, then iA(G) ≤ d; and if d ≥ |A|, then iA(G) ≤ 2d -- |A| + 1. (iv) iZ 3 (G) ≤ l(G) + 2. All those bounds are best possible.;2. Modulo orientation. A mod (2p + 1)-orientation D is an orientation of G such that d +D(v) = d--D(v) (mod 2p + 1) for any vertex v ∈ V ( G). We prove that for any integer t ≥ 2, there exists a finite family F = F(p, t) of graphs that do not have a mod (2p + 1)-orientation, such that every graph G with independence number at most t either admits a mod (2p+1)-orientation or is contractible to a member in F. In particular, the graph family F(p, 2) is determined, and our results imply that every 8-edge-connected graph G with independence number at most two admits a mod 5-orientation.;3. Neighbor sum distinguishing total coloring. A proper total k-coloring &phis; of a graph G is a mapping from V(G) ∪ E(G) to {lcub}1,2, . . .,k{rcub} such that no adjacent or incident elements in V(G) ∪ E( G) receive the same color. Let m&phis;( v) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if m &phis;(u) ≠ m&phis;( v) for each edge uv ∈ E( G ). Let chitSigma(G) be the neighbor sum distinguishing total chromatic number of a graph G. Pilsniak and Wozniak conjectured that for any graph G, chitSigma( G) ≤ Delta(G) + 3. We show that if G is a graph with treewidth ℓ ≥ 3 and Delta(G) ≥ 2ℓ + 3, then chitSigma( G) + ℓ -- 1. This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when ℓ = 3 and Delta ≥ 9, we show that Delta(G)+1 ≤ chit Sigma(G) ≤ Delta(G)+2 and characterize graphs with equalities.;4. Star edge coloring. A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Let ch\u27st(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound of the star chromatic index of trees also holds for list star chromatic index of trees, i.e. ch\u27st( T) ≤ [3Delta/2] for any tree T with maximum degree Delta. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs

    Labeling of graphs, sumset of squares of units modulo n and resonance varieties of matroids

    Get PDF
    This thesis investigates problems in a number of different areas of graph theory and its applications in other areas of mathematics. Motivated by the 1-2-3-Conjecture, we consider the closed distinguishing number of a graph G, denoted by dis[G]. We provide new upper bounds for dis[G] by using the Combinatorial Nullstellensatz. We prove that it is NP-complete to decide for a given planar subcubic graph G, whether dis[G] = 2. We show that for each integer t there is a bipartite graph G such that dis[G] \u3e t. Then some polynomial time algorithms and NP-hardness results for the problem of partitioning the edges of a graph into regular and/or locally irregular subgraphs are presented. We then move on to consider Johnson graphs to find resonance varieties of some classes of sparse paving matroids. The last application we consider is in number theory, where we find the number of solutions of the equation x21 + _ _ _ + x2 k = c, where c 2 Zn, and xi are all units in the ring Zn. Our approach is combinatorial using spectral graph theory

    Between proper and strong edge-colorings of subcubic graphs

    Full text link
    In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where edges of some colors are allowed to form matchings, and the remaining form induced matchings. Our research is motivated by the conjecture proposed in a recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75) asserting that by allowing three additional induced matchings, one is able to save one matching color. We prove that every graph with maximum degree 3 can be decomposed into one matching and at most 8 induced matchings, and two matchings and at most 5 induced matchings. We also show that if a graph is in class I, the number of induced matchings can be decreased by one, hence confirming the above-mentioned conjecture for class I graphs

    Coloring and covering problems on graphs

    Get PDF
    The \emph{separation dimension} of a graph GG, written π(G)\pi(G), is the minimum number of linear orderings of V(G)V(G) such that every two nonincident edges are ``separated'' in some ordering, meaning that both endpoints of one edge appear before both endpoints of the other. We introduce the \emph{fractional separation dimension} πf(G)\pi_f(G), which is the minimum of a/ba/b such that some aa linear orderings (repetition allowed) separate every two nonincident edges at least bb times. In contrast to separation dimension, we show fractional separation dimension is bounded: always πf(G)3\pi_f(G)\le 3, with equality if and only if GG contains K4K_4. There is no stronger bound even for bipartite graphs, since πf(Km,m)=πf(Km+1,m)=3mm+1\pi_f(K_{m,m})=\pi_f(K_{m+1,m})=\frac{3m}{m+1}. We also compute πf(G)\pi_f(G) for cycles and some complete tripartite graphs. We show that πf(G)<2\pi_f(G)<\sqrt{2} when GG is a tree and present a sequence of trees on which the value tends to 4/34/3. We conjecture that when n=3mn=3m the K4K_4-free nn-vertex graph maximizing πf(G)\pi_f(G) is Km,m,mK_{m,m,m}. We also consider analogous problems for circular orderings, where pairs of nonincident edges are separated unless their endpoints alternate. Let π(G)\pi^\circ(G) be the number of circular orderings needed to separate all pairs, and let πf(G)\pi_f^\circ(G) be the fractional version. Among our results: (1) π(G)=1\pi^\circ(G)=1 if and only GG is outerplanar. (2) π(G)2\pi^\circ(G)\le2 when GG is bipartite. (3) π(Kn)log2log3(n1)\pi^\circ(K_n)\ge\log_2\log_3(n-1). (4) πf(G)32\pi_f^\circ(G)\le\frac{3}{2}, with equality if and only if K4GK_4\subseteq G. (5) πf(Km,m)=3m32m1\pi_f^\circ(K_{m,m})=\frac{3m-3}{2m-1}. A \emph{star kk-coloring} is a proper kk-coloring where the union of any two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an \emph{\Ifp}. We use discharging to prove that every graph with maximum average degree less than 52\frac{5}{2} has an \Ifp, which is sharp and improves the result of Bu, Cranston, Montassier, Raspaud, and Wang (2009). As a corollary, we gain that every planar graph with girth at least 10 has a star 4-coloring. A proper vertex coloring of a graph GG is \emph{rr-dynamic} if for each vV(G)v\in V(G), at least min{r,d(v)}\min\{r,d(v)\} colors appear in NG(v)N_G(v). We investigate 33-dynamic versions of coloring and list coloring. We prove that planar and toroidal graphs are 3-dynamically 10-choosable, and this bound is sharp for toroidal graphs. Given a proper total kk-coloring cc of a graph GG, we define the \emph{sum value} of a vertex vv to be c(v)+uvE(G)c(uv)c(v) + \sum_{uv \in E(G)} c(uv). The smallest integer kk such that GG has a proper total kk-coloring whose sum values form a proper coloring is the \emph{neighbor sum distinguishing total chromatic number} χΣ(G)\chi''_{\Sigma}(G). Pil{\'s}niak and Wo{\'z}niak~(2013) conjectured that χΣ(G)Δ(G)+3\chi''_{\Sigma}(G)\leq \Delta(G)+3 for any simple graph with maximum degree Δ(G)\Delta(G). We prove this bound to be asymptotically correct by showing that χΣ(G)Δ(G)(1+o(1))\chi''_{\Sigma}(G)\leq \Delta(G)(1+o(1)). The main idea of our argument relies on Przyby{\l}o's proof (2014) for neighbor sum distinguishing edge-coloring

    Twin-width VIII: delineation and win-wins

    Get PDF
    We introduce the notion of delineation. A graph class C\mathcal C is said delineated if for every hereditary closure D\mathcal D of a subclass of C\mathcal C, it holds that D\mathcal D has bounded twin-width if and only if D\mathcal D is monadically dependent. An effective strengthening of delineation for a class C\mathcal C implies that tractable FO model checking on C\mathcal C is perfectly understood: On hereditary closures D\mathcal D of subclasses of C\mathcal C, FO model checking is fixed-parameter tractable (FPT) exactly when D\mathcal D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we show that segment graphs, directed path graphs, and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that Kt,tK_{t,t}-free segment graphs, and axis-parallel HtH_t-free unit segment graphs have bounded twin-width, where HtH_t is the half-graph or ladder of height tt. In contrast, axis-parallel H4H_4-free two-lengthed segment graphs have unbounded twin-width. Our new results, combined with the known FPT algorithm for FO model checking on graphs given with O(1)O(1)-sequences, lead to win-win arguments. For instance, we derive FPT algorithms for kk-Ladder on visibility graphs of 1.5D terrains, and kk-Independent Set on visibility graphs of simple polygons.Comment: 51 pages, 19 figure
    corecore