2,254 research outputs found

    On the neighbour sum distinguishing index of planar graphs

    Full text link
    Let cc be a proper edge colouring of a graph G=(V,E)G=(V,E) with integers 1,2,…,k1,2,\ldots,k. Then k≥Δ(G)k\geq \Delta(G), while by Vizing's theorem, no more than k=Δ(G)+1k=\Delta(G)+1 is necessary for constructing such cc. On the course of investigating irregularities in graphs, it has been moreover conjectured that only slightly larger kk, i.e., k=Δ(G)+2k=\Delta(G)+2 enables enforcing additional strong feature of cc, namely that it attributes distinct sums of incident colours to adjacent vertices in GG if only this graph has no isolated edges and is not isomorphic to C5C_5. We prove the conjecture is valid for planar graphs of sufficiently large maximum degree. In fact even stronger statement holds, as the necessary number of colours stemming from the result of Vizing is proved to be sufficient for this family of graphs. Specifically, our main result states that every planar graph GG of maximum degree at least 2828 which contains no isolated edges admits a proper edge colouring c:E→{1,2,…,Δ(G)+1}c:E\to\{1,2,\ldots,\Delta(G)+1\} such that ∑e∋uc(e)≠∑e∋vc(e)\sum_{e\ni u}c(e)\neq \sum_{e\ni v}c(e) for every edge uvuv of GG.Comment: 22 page

    Group twin coloring of graphs

    Full text link
    For a given graph GG, the least integer k≥2k\geq 2 such that for every Abelian group G\mathcal{G} of order kk there exists a proper edge labeling f:E(G)→Gf:E(G)\rightarrow \mathcal{G} so that ∑x∈N(u)f(xu)≠∑x∈N(v)f(xv)\sum_{x\in N(u)}f(xu)\neq \sum_{x\in N(v)}f(xv) for each edge uv∈E(G)uv\in E(G) is called the \textit{group twin chromatic index} of GG and denoted by χg′(G)\chi'_g(G). This graph invariant is related to a few well-known problems in the field of neighbor distinguishing graph colorings. We conjecture that χg′(G)≤Δ(G)+3\chi'_g(G)\leq \Delta(G)+3 for all graphs without isolated edges, where Δ(G)\Delta(G) is the maximum degree of GG, and provide an infinite family of connected graph (trees) for which the equality holds. We prove that this conjecture is valid for all trees, and then apply this result as the base case for proving a general upper bound for all graphs GG without isolated edges: χg′(G)≤2(Δ(G)+col(G))−5\chi'_g(G)\leq 2(\Delta(G)+{\rm col}(G))-5, where col(G){\rm col}(G) denotes the coloring number of GG. This improves the best known upper bound known previously only for the case of cyclic groups Zk\mathbb{Z}_k
    • …
    corecore