80 research outputs found

    Impact of directional antennas on routing and neighbor discovery in wireless ad-hoc networks

    Get PDF
    Wireless ad-hoc networks are data networks that are deployed without a fixed infrastructure nor central controllers such as access points or base stations. In these networks, data packets are forwarded directly to the destination node if they are within the transmission range of the sender or sent through a multi-hop path of intermediary nodes that act as relays. This paradigm where a fixed infrastructure is not needed, is tolerant to topology changes and allows a fast deployment have been considered as a promissory technology that is suitable for a large number of network implementations, such as mobile hand-held devices, wireless sensors, disaster recovery networks, etc. Recently, smart directional antennas have been identified as a robust technology that can boost the performance of wireless ad-hoc networks in terms of coverage, connectivity, and capacity. Contrary to omnidirectional antennas, which can radiate energy in all directions, directional antennas can focus the energy in a specific direction, extending the coverage range for the same power level. Longer ranges provide shorter paths to destination nodes and also improve connectivity. Moreover, directional antennas can reduce the number of collisions in a contention-based access scheme as they can steer the main lobe in the desired direction and set nulls in all the others, thereby they minimize the co-channel interference and reduce the noise level. Connections are more reliable due to the increased link stability and spatial diversity. Shorter paths, as well as alternative paths, are also available as a consequence of the use of directional antennas. All these features combined results in a higher network capacity. Most of the previous research has focused on adapting the existing medium access control and routing protocols to utilize directional communications. This research work is novel because it improves the neighbor discovery process as it allows to discover nodes in the second neighborhood of a given node using a gossip based procedure and by sharing the relative position information obtained during this stage with the routing protocol with the aim of reducing the number of hops between source and destination. We have also developed a model to evaluate the energy consumed by the nodes when smart directional antennas are used in the ad-hoc network. This study has demonstrated that by adapting the beamwidth of the antennas nodes are able to reach furthest nodes and consequently, reduce the number of hops between source and destination. This fact not only reduces the end-to-end delay and improves the network throughput but also reduces the average energy consumed by the whole network

    The improvements in ad hoc routing and network performance with directional antennas

    Get PDF
    The ad hoc network has typically been applied in military and emergency environments. In the past decade, a tremendous amount of MAC protocols and routing protocols have been developed, but most of these protocols are designed for networks where devices equipped with omni-directional antennas. With fast development of the antenna technology, directional antennas have been proposed to improve routing and network performance in ad hoc networks. However, several challenges and design issues (like new hidden terminal problem, deafness problem, neighbor discovery problem and routing overhead problem) arise when applying directional antennas to ad hoc networks, consequently a great number of directional MAC and routing protocols have been proposed. In this thesis the implementation of directional antennas in ad hoc networks is studied from technical point of view. This thesis discusses the problems of utilizing directional antenna in ad hoc networks and reviews several recent proposed MAC algorithms and routing algorithms. The improvement of ad hoc routing and network performance with directional antennas compared with omni-directional antennas are evaluated based on simulations which are done with the QualNet simulator. The main finding of this study is that directional antennas always outperform omni-directional antennas in both static and mobility scenarios, and the advantage of directional antennas is more obvious when channel condition becomes worse or mobility level is larger. This thesis provides a survey of directional MAC and routing protocols in ad hoc networks. The result and principles obtained in this thesis are quite valuable for researchers working in this field. They can use it as reference for further researches. The theory parts of smart antenna technology and IEEE 802.11 MAC protocol can be considered as a technical introduction for beginners

    Fast Neighbor Discovery for Wireless Ad Hoc Network with Successive Interference Cancellation

    Full text link
    Neighbor discovery (ND) is a key step in wireless ad hoc network, which directly affects the efficiency of wireless networking. Improving the speed of ND has always been the goal of ND algorithms. The classical ND algorithms lose packets due to the collision of multiple packets, which greatly affects the speed of the ND algorithms. Traditional methods detect packet collision and implement retransmission when encountering packet loss. However, they does not solve the packet collision problem and the performance improvement of ND algorithms is limited. In this paper, the successive interference cancellation (SIC) technology is introduced into the ND algorithms to unpack multiple collision packets by distinguishing multiple packets in the power domain. Besides, the multi-packet reception (MPR) is further applied to reduce the probability of packet collision by distinguishing multiple received packets, thus further improving the speed of ND algorithms. Six ND algorithms, namely completely random algorithm (CRA), CRA based on SIC (CRA-SIC), CRA based on SIC and MPR (CRA-SIC-MPR), scan-based algorithm (SBA), SBA based on SIC (SBA-SIC), and SBA based on SIC and MPR (SBA-SIC-MPR), are theoretically analyzed and verified by simulation. The simulation results show that SIC and MPR reduce the ND time of SBA by 69.02% and CRA by 66.03% averagely.Comment: 16 pages, 16 figure

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    Facing the Millimeter-wave Cell Discovery Challenge in 5G Networks with Context-awareness

    Get PDF
    The introduction of mm-wave technologies in the future 5G networks poses a rich set of network access challenges. We need new ways of dealing with legacy network functionalities to fully unleash their great potential, among them the cell discovery procedure is one of the most critical. In this article, we propose novel cell discovery algorithms enhanced by the context information available through a C-/Uplane- split heterogeneous network architecture. They rely on a geo-located context database to overcome the severe effects of obstacle blockages. Moreover, we investigate the coordination problem of multiple mm-wave base stations that jointly process user access requests. We show that optimizing the resource allocated to the discovery has a great importance in defining perceived latency and supported user request rate. We have performed complete and accurate numerical simulations to provide a clear overview of the main challenging aspects. Results show that the proposed solutions have an outstanding performance with respect to basic discovery approaches and can fully enable mm-wave cell discovery in 5G networks

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Kablosuz sensör ağlarinda yönlü antenlerle enerji̇ veri̇mli̇ yönlendi̇rme

    Get PDF
    Without measurements, sustainable development effort can not progress in the right direction. Wireless sensor networks are vital for monitoring in real time and making accurate measurements for such an endeavor. However small energy storage in the sensors can become a bottleneck if the wireless sensor network is not optimized at the hardware and software level. Directional antennas are such optimization technologies at the hardware level. They have advantages over the omnidirectional antennas, such as high gain, less interference, longer transmission range, and less power consumption. In wireless sensor networks, most of the energy is consumed for communication. Considering the limited energy in small scale batteries of the sensors, energy efficient (aware) routing, is one of the most important software optimization techniques. The main goal of the technique is to improve the lifetime of the wireless sensor networks. In the light of these observations, it is desirable to do a coupled design of directional antennas with network software, for fully exploiting the advantages offered by directional antenna technology. In this thesis, the possibilities of doing such integrated design are surveyed and improvements are suggested. The design of the proposed microstrip patch antenna array is discussed and the performance characteristics are assessed through simulations. In the benchmarks, the proposed routing method showed improvements in energy usage compared to the existing approaches.Ölçümler olmadan sürdürülebilir kalkınma çabaları doğru yönde ilerleyemez. Bu tür çabalar için, kablosuz sensör ağları, gerçek zamanlı olarak izleme ve kesin ölçümler yapmak için vazgeçilemez unsurdur. Ancak, sensör ağı, donanım ve yazılım düzeylerinde optimize edilmemişse, sensörlerde enerji yetersizliği görülebilinir. Yönlü antenler, donanım düzeyinde uygulanan optimizasyon teknolojilerinden biri olmakla birlikte, çok yönlü antenlerden farklı olarak, yüksek kazanç, daha az parazit, daha uzun iletim mesafesi ve daha az güç tüketimi sağlarlar. Kablosuz sensör ağlarında enerjinin çoğu iletişim için tüketilir. Sensörlerdeki limitli enerjili küçük ölçekli piller göz önüne alındığında, yazılım düzeyindeki önemli metodlardan biri olan enerji verimli (duyarlı) yönlendirme protokolü, kablosuz sensör ağının genel enerji kullanımını optimize etmek ve ömrünü uzatmak için gereklidir. Bu gözlemlerin ışığında, yönlü anten teknolojisinin sunduğu potansiyel avantajlardan tam olarak yararlanmak için, yönlü antenlerin ağ yazılımıyla birlikte entegre tasarımını yapmak arzu edilir. Bu tezde, böyle bir entegre tasarımın yapılma olasılıkları araştırılmış ve iyileştirmeler önerilmiştir. Tezde, küçük şeritli yamalı anten dizisinin tasarımı tartışılmış ve performans karakteristikleri simulasyonlarla ölçülmüştür. Önerilen yönlendirme algoritması, diğer yönlendirme algoritmaları ile karşılaştırıldığında, enerji kullanımında iyileştirmeler göstermiştirM.S. - Master of Scienc

    Parameter assignment for improved connectivity and security in randomly deployed wireless sensor networks via hybrid omni/uni-directional antennas

    Get PDF
    Conguring a network system to operate at optimal levels of performance re-quires a comprehensive understanding of the eects of a variety of system parameterson crucial metrics like connectivity and resilience to network attacks. Traditionally,omni-directional antennas have been used for communication in wireless sensor net-works. In this thesis, a hybrid communication model is presented where-in, nodes ina network are capable of both omni-directional and uni-directional communication.The eect of such a model on performance in randomly deployed wireless sensor net-works is studied, specically looking at the eect of a variety of network parameterson network performance.The work in this thesis demonstrates that, when the hybrid communication modelis employed, the probability of 100% connectivity improves by almost 90% and thatof k-connectivity improves by almost 80% even at low node densities when comparedto the traditional omni-directional model. In terms of network security, it was foundthat the hybrid approach improves network resilience to the collision attack by almost85% and the cost of launching a successful network partition attack was increased byas high as 600%. The gains in connectivity and resilience were found to improve withincreasing node densities and decreasing antenna beamwidths
    corecore