844 research outputs found

    Novel Model of Adaptive Module for Security and QoS Provisioning in Wireless Heterogeneous Networks

    Get PDF
    Considering the fact that Security and Quality-Of-Service (QoS) provisioning for multimedia traffic in Wireless Heterogeneous Networks are becoming increasingly important objectives, in this paper we are introducing a novel adaptive Security and QoS framework. This framework is planned to be implemented in integrated network architecture (UMTS, WiMAX and WLAN). The aim of our novel framework is presenting a new module that shall provide the best QoS provisioning and secure communication for a given service using one or more wireless technologies in a given time

    Performance Evaluation of MPLS in a Virtualized Service Provider Core (with/without Class of Service)

    Get PDF
    The last decade has witnessed a major change in the types of traffic scaling the Internet. With the development of real-time applications several challenges were faced within traditional IP networks. Some of these challenges are delay, increased costs faced by the service provider and customer, limited scalability, separate infrastructure costs and high administrative overheads to manage large networks etc. To combat these challenges, researchers have steered towards finding alternate solutions. Over the recent years, we have seen an introduction of a number of virtualized platforms and solutions being offered in the networking industry. Virtual load balancers, virtual firewalls, virtual routers, virtual intrusion detection and preventions systems are just a few examples within the Network Function Virtualization world! Service Providers are trying to find solutions where they could reduce operational expenses while at the same time meet the growing bandwidth demands of their customers. The main aim of this thesis is to evaluate the performance of voice, data and video traffic in a virtualized service provider core. Observations are made on how these traffic types perform on congested vs uncongested links and how Quality of Service treats traffic in a virtualized Service Provider Core using Round Trip Time as a performance metric. This thesis also tries to find if resiliency features such as Fast Reroute provide an additional advantage in failover scenarios within virtualized service provider cores. Juniper Networks vSRX are used to replicate virtual routers in a virtualized service provider core. Twenty-Four tests are carried out to gain a better understanding of how real-time applications and resiliency methods perform in virtualized networks. It is observed that a trade-off exists when introducing QoS on congested primary and secondary label switched paths. What can be observed thru the graphs is having Quality of Service enabled drops more packets however gives us the advantage of lower Round Trip Time for in-profile traffic. On the hand, having Quality of Service disabled, permits more traffic but leads to bandwidth contention between the three traffic classes leading to higher Round-Trip Times. The true benefit of QoS is seen in traffic congestion scenarios. The test bed built in this thesis, shows us that Fast Reroute does not add a significant benefit to aid in the reduction of packet loss during failover scenarios between primary and secondary paths. However, in certain scenarios fast reroute does seem to reduce packet loss specifically for data traffic

    Toward Efficient Service-level QoS Provisioning in Large-scale 802.11-based Networks

    Get PDF

    Mobility Management, Quality of Service, and Security in the Design of Next Generation Wireless Network

    Full text link
    The next generation wireless network needs to provide seamless roaming among various access technologies in a heterogeneous environment. In allowing users to access any system at anytime and anywhere, the performance of mobility-enabled protocols is important. While Mobile IPv6 is generally used to support macro-mobility, integrating Mobile IPv6 with Session Initiation Protocol (SIP) to support IP traffic will lead to improved mobility performance. Advanced resource management techniques will ensure Quality of Service (QoS) during real-time mobility within the Next Generation Network (NGN) platform. The techniques may use a QoS Manager to allow end-to-end coordination and adaptation of Quality of Service. The function of the QoS Manager also includes dynamic allocation of resources during handover. Heterogeneous networks raise many challenges in security. A security entity can be configured within the QoS Manager to allow authentication and to maintain trust relationships in order to minimize threats during system handover. The next generation network needs to meet the above requirements of mobility, QoS, and security

    Multidomain Network Based on Programmable Networks: Security Architecture

    Get PDF
    This paper proposes a generic security architecture designed for a multidomain and multiservice network based on programmable networks. The multiservice network allows users of an IP network to run programmable services using programmable nodes located in the architecture of the network. The programmable nodes execute codes to process active packets, which can carry user data and control information. The multiservice network model defined here considers the more pragmatic trends in programmable networks. In this scenario, new security risks that do not appear in traditional IP networks become visible. These new risks are as a result of the execution of code in the programmable nodes and the processing of the active packets. The proposed security architecture is based on symmetric cryptography in the critical process, combined with an efficient manner of distributing the symmetric keys. Another important contribution has been to scale the security architecture to a multidomain scenario in a single and efficient way.Publicad

    Network convergence and QoS for future multimedia services in the VISION project

    Get PDF
    The emerging use of real-time 3D-based multimedia applications imposes strict quality of service (QoS) requirements on both access and core networks. These requirements and their impact to provide end-to-end 3D videoconferencing services have been studied within the Spanish-funded VISION project, where different scenarios were implemented showing an agile stereoscopic video call that might be offered to the general public in the near future. In view of the requirements, we designed an integrated access and core converged network architecture which provides the requested QoS to end-to-end IP sessions. Novel functional blocks are proposed to control core optical networks, the functionality of the standard ones is redefined, and the signaling improved to better meet the requirements of future multimedia services. An experimental test-bed to assess the feasibility of the solution was also deployed. In such test-bed, set-up and release of end-to-end sessions meeting specific QoS requirements are shown and the impact of QoS degradation in terms of the user perceived quality degradation is quantified. In addition, scalability results show that the proposed signaling architecture is able to cope with large number of requests introducing almost negligible delay
    corecore