31 research outputs found

    Controlling Equilibrium and Synchrony in Arrays of FitzHugh– Nagumo Type Oscillators

    Get PDF
    We present a case study of the FitzHugh–Nagumo (FHN) type model with a strongly asymmetric activation function. The proposed model is an electronically rather than a biologically inspired approach. The asymmetric exponential model imitates the shape of spikes in real neurons better than the classical FHN model with a cubic van der Pol activation function. An array of mean-field coupled non-identical FHN type oscillators is considered. The effect of mutual synchronization (phase locking) of units, originally oscillating at their individual frequencies, is demonstrated. Several feedback control methods, including stable tracking filter technique, mean field nullifying, and repulsive coupling are shown either to stabilize unstable equilibrium states or to suppress synchrony of the coupled FHN oscillators. The stability of the equilibrium states is analyzed by employing the eigenvalues, obtained from the characteristic equation, and by using the diagonal minors of the Routh–Hurwitz matrix. Nonlinear differential equations are solved numerically

    Destroying synchrony in an array of the FitzHugh–Nagumo oscillators by external DC voltage source

    Get PDF
    A control method for desynchronizing an array of mean-field coupled FitzHugh–Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage source to the coupling node. Both, numerical solution of corresponding nonlinear differential equations and hardware experiments with a nonlinear electrical circuit have been performed

    Self-oscillation

    Full text link
    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a "relaxation oscillator," i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized ("entrained"). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot's theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.Comment: 68 pages, 33 figures. v4: Typos fixed and other minor adjustments. To appear in Physics Report

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    The Kuramoto model: A simple paradigm for synchronization phenomena

    Get PDF
    Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included
    corecore