22,979 research outputs found

    Ensemble of Single‐Layered Complex‐Valued Neural Networks for Classification Tasks

    Get PDF
    This paper presents ensemble approaches in single-layered complex-valued neural network (CVNN) to solve real-valued classification problems. Each component CVNN of an ensemble uses a recently proposed activation function for its complex-valued neurons (CVNs). A gradient-descent based learning algorithm was used to train the component CVNNs. We applied two ensemble methods, negative correlation learning and bagging, to create the ensembles. Experimental results on a number of real-world benchmark problems showed a substantial performance improvement of the ensembles over the individual single-layered CVNN classifiers. Furthermore, the generalization performances were nearly equivalent to those obtained by the ensembles of real-valued multilayer neural networks

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Vote-boosting ensembles

    Full text link
    Vote-boosting is a sequential ensemble learning method in which the individual classifiers are built on different weighted versions of the training data. To build a new classifier, the weight of each training instance is determined in terms of the degree of disagreement among the current ensemble predictions for that instance. For low class-label noise levels, especially when simple base learners are used, emphasis should be made on instances for which the disagreement rate is high. When more flexible classifiers are used and as the noise level increases, the emphasis on these uncertain instances should be reduced. In fact, at sufficiently high levels of class-label noise, the focus should be on instances on which the ensemble classifiers agree. The optimal type of emphasis can be automatically determined using cross-validation. An extensive empirical analysis using the beta distribution as emphasis function illustrates that vote-boosting is an effective method to generate ensembles that are both accurate and robust

    Deep Architectures and Ensembles for Semantic Video Classification

    Get PDF
    This work addresses the problem of accurate semantic labelling of short videos. To this end, a multitude of different deep nets, ranging from traditional recurrent neural networks (LSTM, GRU), temporal agnostic networks (FV,VLAD,BoW), fully connected neural networks mid-stage AV fusion and others. Additionally, we also propose a residual architecture-based DNN for video classification, with state-of-the art classification performance at significantly reduced complexity. Furthermore, we propose four new approaches to diversity-driven multi-net ensembling, one based on fast correlation measure and three incorporating a DNN-based combiner. We show that significant performance gains can be achieved by ensembling diverse nets and we investigate factors contributing to high diversity. Based on the extensive YouTube8M dataset, we provide an in-depth evaluation and analysis of their behaviour. We show that the performance of the ensemble is state-of-the-art achieving the highest accuracy on the YouTube-8M Kaggle test data. The performance of the ensemble of classifiers was also evaluated on the HMDB51 and UCF101 datasets, and show that the resulting method achieves comparable accuracy with state-of-the-art methods using similar input features

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles
    corecore