2,216 research outputs found

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    A New Fundamental Evidence of Non-Classical Structure in the Combination of Natural Concepts

    Full text link
    We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension, etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modeled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modeled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the supersposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning' guided by 'emergence', and that the latter generally prevails over the former. All these findings provide a new fundamental support to our quantum-theoretic approach to human cognition.Comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1503.0426

    Quantum Structure of Negation and Conjunction in Human Thought

    Get PDF
    We analyse in this paper the data collected in a set of experiments performed on human subjects on the combination of natural concepts. We investigate the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., 'Fruits' and 'Vegetables', and their conjunction 'Fruits And Vegetables', but also their conjunction when one or both concepts are negated, namely, 'Fruits And Not Vegetables', 'Not Fruits And Vegetables' and 'Not Fruits And Not Vegetables'. Our findings sharpen existing analysis on conceptual combinations, revealing systematic and remarkable deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a further significant deviation and a priori unexpected from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an 'emergent reasoning' and a 'logical reasoning', and that these two processes can be successfully represented in a Fock space algebraic structure.Comment: 44 pages. arXiv admin note: text overlap with arXiv:1406.235

    On a New Construction of Pseudo BL-Algebras

    Full text link
    We present a new construction of a class pseudo BL-algebras, called kite pseudo BL-algebras. We start with a basic pseudo hoop AA. Using two injective mappings from one set, JJ, into the second one, II, and with an identical copy A‾\overline A with the reverse order we construct a pseudo BL-algebra where the lower part is of the form (A‾)J(\overline A)^J and the upper one is AIA^I. Starting with a basic commutative hoop we can obtain even a non-commutative pseudo BL-algebra or a pseudo MV-algebra, or an algebra with non-commuting negations. We describe the construction, subdirect irreducible kite pseudo BL-algebras and their classification

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory
    • …
    corecore