38,737 research outputs found

    Logic Negation with Spiking Neural P Systems

    Full text link
    Nowadays, the success of neural networks as reasoning systems is doubtless. Nonetheless, one of the drawbacks of such reasoning systems is that they work as black-boxes and the acquired knowledge is not human readable. In this paper, we present a new step in order to close the gap between connectionist and logic based reasoning systems. We show that two of the most used inference rules for obtaining negative information in rule based reasoning systems, the so-called Closed World Assumption and Negation as Finite Failure can be characterized by means of spiking neural P systems, a formal model of the third generation of neural networks born in the framework of membrane computing.Comment: 25 pages, 1 figur

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Extending boolean regulatory network models with answer set programming

    Get PDF
    Because of their simplicity, boolean networks are a popular formalism to model gene regulatory networks. However, they have their limitations, including their inability to formally and unambiguously define network behaviour, and their lack of the possibility to model meta interactions, i.e., interactions that target other interactions. In this paper we develop an answer set programming (ASP) framework that supports threshold boolean network semantics and extends it with the capability to model meta interactions. The framework is easy to use but sufficiently flexible to express intricate interactions that go beyond threshold network semantics as we illustrate with an example of a Mammalian cell cycle network. Moreover, readily available answer set solvers can be used to find the steady states of the network

    Ecumenical alethic pluralism

    Get PDF
    ABSTRACTEcumenical Alethic Pluralism is a novel kind of alethic pluralism. It is ecumenical in that it widens the scope of alethic pluralism by allowing for a normatively deflated truth property alongside a variety of normatively robust truth properties. We establish EAP by showing how Wright’s Inflationary Arguments fail in the domain of taste, once a relativist treatment of the metaphysics and epistemology of that domain is endorsed. EAP is highly significant to current debates on the nature of truth insofar as it involves a reconfiguration of the dialectic between deflationists and pluralists

    Complexity of fuzzy answer set programming under Łukasiewicz semantics

    Get PDF
    Fuzzy answer set programming (FASP) is a generalization of answer set programming (ASP) in which propositions are allowed to be graded. Little is known about the computational complexity of FASP and almost no techniques are available to compute the answer sets of a FASP program. In this paper, we analyze the computational complexity of FASP under Łukasiewicz semantics. In particular we show that the complexity of the main reasoning tasks is located at the first level of the polynomial hierarchy, even for disjunctive FASP programs for which reasoning is classically located at the second level. Moreover, we show a reduction from reasoning with such FASP programs to bilevel linear programming, thus opening the door to practical applications. For definite FASP programs we can show P-membership. Surprisingly, when allowing disjunctions to occur in the body of rules – a syntactic generalization which does not affect the expressivity of ASP in the classical case – the picture changes drastically. In particular, reasoning tasks are then located at the second level of the polynomial hierarchy, while for simple FASP programs, we can only show that the unique answer set can be found in pseudo-polynomial time. Moreover, the connection to an existing open problem about integer equations suggests that the problem of fully characterizing the complexity of FASP in this more general setting is not likely to have an easy solution
    corecore