68 research outputs found

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space

    Get PDF
    The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission

    Detecting Small-Scale Topographic Changes and Relict Geomorphic Features on Barrier Islands Using SAR

    Get PDF
    The shapes and elevations of barrier islands may change dramatically over a short period of time during a storm. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to measure coastal topography and to detect storm-induced changes in topography. Surrogate measures of topography observed in multiband, fully polarimetric AIRSAR (This type of data are now referred to as POLSAR data.) are also being investigated. Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas obtained with Topographic SAR (TOPSAR) are compared with measurements by Global Positioning System (GPS) ground surveys and electronic total station surveys. In addition to topographic mapping, this project is evaluating the use of POLSAR to detect old features such as storm scarps, storm channels, former tidal inlets, and beach ridges that have been obscured by vegetation, erosion, deposition, and artificial filling. We have also expanded the work from the original proposal to include the mapping of coastal wetland vegetation and depositional environments. Methods developed during this project will provide coastal geologists with an unprecedented tool for monitoring and understanding barrier island systems. This understanding will improve overall coastal management policies and will help reduce the effects of natural and man-induced coastal hazards. This report summarizes our accomplishments during the second year of the study. Also included is a discussion of our planned activities for year 3 and a revised budget

    Method for landslides detection with semi-automatic procedures: The case in the zone center-east of Cauca department, Colombia

    Get PDF
    Landslides are a common natural hazard that causes human casualties, but also infrastructure damage and land-use degradation. Therefore, a quantitative assessment of their presence is required by means of detecting and recognizing the potentially unstable areas. This research aims to develop a method supported on semiautomatic methods to detect potential mass movements at a regional scale. Five techniques were studied: Morphometry, SAR interferometry (InSAR), Persistent Scatterer InSAR (PS-InSAR), SAR polarimetry (PolSAR) and NDVI composites of Landsat 5, Landsat 7, and Landsat 8. The case study was chosen within the mid-eastern area of the Cauca state, which is characterised by its mountainous terrain and the presence of slope instabilities, officially registered in the CGS-SIMMA landslide inventory. This inventory revealed that the type `slide' occurred with 77.4% from the entire registries, `fall' with 16.5%, followed by `creeps' with 3%, flows with 2.6%, and `lateral spread' with 0.43%. As a result, we obtained the morphometric variables: slope, CONVI, TWI, landform, which were highly associated with landslides. The effect of a DEM in the processing flow of the InSAR method was similar for the InSAR coherence variable using the DEMs ASTER, PALSAR RTC, Topo-map, and SRTM. Then, a multiInSAR analysis gave displacement velocities in the LOS direction between -10 and 10 mm/year. With the dual-PolSAR analysis (Sentinel-1), VH and VV C-band polarised radar energy emitted median values of backscatters, for landslides, about of -14.5 dB for VH polarisation and -8.5 dB for VV polarisation. Also, L-band fully polarimetric NASA-UAVSAR data allowed to nd the mechanism of dispersion of CGS landslide inventory: 39% for surface scattering, 46.4% for volume dispersion, and 14.6% for double-bounce scattering. The optical remote sensing provided NDVI composites derived from Landsat series between 2012 and 2016, showing that NDVI values between 0.40 and 0.70 had a high correlation to landslides. In summary, we found the highest categories related to landslides by Weight of Evidence method (WofE) for each spaceborne technique applied. Finally, these results were merged to generate the landslide detection model by using the supervised machine learning method of Random Forest. By taking training and test samples, the precision of the detection model was of about 70% for the rotational and translational types.Los deslizamientos son una amenaza natural que causa pérdidas humanas, daños a la infraestructura y degradación del suelo. Una evaluación cuantitativa de su presencia se requiere mediante la detección y el reconocimiento de potenciales áreas inestables. Esta investigación tuvo como alcance desarrollar un método soportado en métodos semi-automáticos para detectar potenciales movimientos en masa a escala regional. Cinco técnicas fueron estudiadas: Morfometría, Interferometría radar, Interferometría con Persistent Scatterers, Polarimetría radar y composiciones del NDVI con los satélites Landsat 5, Landsat 7 y Landsat 8. El caso de estudio se seleccionó dentro de la región intermedia al este del departamento del Cauca, la cual se caracteriza por terreno montañoso y la presencia de inestabilidades de la pendiente oficialmente registrados en el servicio SIMMA del Servicio Geológico Colombiano. Este inventario reveló que el tipo de movimiento deslizamiento ocurrió con una frecuencia relativa de 77.4%, caidos con el 16.5% de los casos y reptaciones con 3%, flujos con 2.6% y propagación lateral con 0.43%. Como resultado, se obtuvo las variables morfométricas: pendiente, convergencia, índice topográfico de humedad y forma del terreno altamente asociados con los deslizamientos. El efecto de un DEM en el procesamiento del método InSAR fue similar para la variable coherencia usando los DEMs: ASTER, PAlSAR RTC, Topo-map y SRTM. Un análisis Multi-InSAR estimó velocidades de desplazamiento en dirección de vista del radar entre -10 y 10 mm/año. El análisis de polarimetría dual del Sentinel-1 arrojó valores de retrodispersión promedio de -14.5 dB en la banda VH y -8.5dB en la banda VV. Las cuatro polarimetrías del sensor aéreo UAVSAR permitió caracterizar el mecanismo de dispersión del Inventario de Deslizamiento así: 39% en el mecanismo de superficie, 46.4% en el mecanismo de volumen y 14.6% en el mecanismo de doble rebote. La información generada en el rango óptico permitió obtener composiciones de NDVI derivados de la plataforma Landsat entre los años 2012 y 2016, mostrando que el rango entre 0.4 y 0.7 tuvieron una alta asociación con los deslizamientos. En esta investigación se determinaron las categorías de las variables de Teledetección más altamente relacionadas con los movimientos en masa mediante el método de Pesos de Evidencias (WofE). Finalmente, estos resultados se fusionaron para generar el modelo de detección de deslizamientos usando el método supervisado de aprendizaje de máquina Random Forest. Tomando muestras aleatorias para entrenar y validar el modelo en una proporción 70:30, el modelo de detección, especialmente los movimientos de tipo rotacional y traslacional fueron clasificados con una tasa general de éxito del 70%.Ministerio de CienciasConvocatoria 647 de 2014Research line: Geotechnics and Geoenvironmental HazardDoctorad

    Multi-source Remote Sensing for Forest Characterization and Monitoring

    Full text link
    As a dominant terrestrial ecosystem of the Earth, forest environments play profound roles in ecology, biodiversity, resource utilization, and management, which highlights the significance of forest characterization and monitoring. Some forest parameters can help track climate change and quantify the global carbon cycle and therefore attract growing attention from various research communities. Compared with traditional in-situ methods with expensive and time-consuming field works involved, airborne and spaceborne remote sensors collect cost-efficient and consistent observations at global or regional scales and have been proven to be an effective way for forest monitoring. With the looming paradigm shift toward data-intensive science and the development of remote sensors, remote sensing data with higher resolution and diversity have been the mainstream in data analysis and processing. However, significant heterogeneities in the multi-source remote sensing data largely restrain its forest applications urging the research community to come up with effective synergistic strategies. The work presented in this thesis contributes to the field by exploring the potential of the Synthetic Aperture Radar (SAR), SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), Polarimetric SAR Interferometry (PolInSAR), Light Detection and Ranging (LiDAR), and multispectral remote sensing in forest characterization and monitoring from three main aspects including forest height estimation, active fire detection, and burned area mapping. First, the forest height inversion is demonstrated using airborne L-band dual-baseline repeat-pass PolInSAR data based on modified versions of the Random Motion over Ground (RMoG) model, where the scattering attenuation and wind-derived random motion are described in conditions of homogeneous and heterogeneous volume layer, respectively. A boreal and a tropical forest test site are involved in the experiment to explore the flexibility of different models over different forest types and based on that, a leveraging strategy is proposed to boost the accuracy of forest height estimation. The accuracy of the model-based forest height inversion is limited by the discrepancy between the theoretical models and actual scenarios and exhibits a strong dependency on the system and scenario parameters. Hence, high vertical accuracy LiDAR samples are employed to assist the PolInSAR-based forest height estimation. This multi-source forest height estimation is reformulated as a pan-sharpening task aiming to generate forest heights with high spatial resolution and vertical accuracy based on the synergy of the sparse LiDAR-derived heights and the information embedded in the PolInSAR data. This process is realized by a specifically designed generative adversarial network (GAN) allowing high accuracy forest height estimation less limited by theoretical models and system parameters. Related experiments are carried out over a boreal and a tropical forest to validate the flexibility of the method. An automated active fire detection framework is proposed for the medium resolution multispectral remote sensing data. The basic part of this framework is a deep-learning-based semantic segmentation model specifically designed for active fire detection. A dataset is constructed with open-access Sentinel-2 imagery for the training and testing of the deep-learning model. The developed framework allows an automated Sentinel-2 data download, processing, and generation of the active fire detection results through time and location information provided by the user. Related performance is evaluated in terms of detection accuracy and processing efficiency. The last part of this thesis explored whether the coarse burned area products can be further improved through the synergy of multispectral, SAR, and InSAR features with higher spatial resolutions. A Siamese Self-Attention (SSA) classification is proposed for the multi-sensor burned area mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by different test sites, feature sources, and classification methods to assess the improvements achieved by the proposed method. All developed methods are validated with extensive processing of multi-source data acquired by Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Land, Vegetation, and Ice Sensor (LVIS), PolSARproSim+, Sentinel-1, and Sentinel-2. I hope these studies constitute a substantial contribution to the forest applications of multi-source remote sensing

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Interferometric Processing of TanDEM-X Images for Forest Height Estimation

    Get PDF
    Biomass is one of the most desired parameters for applications like climate modelling, resource assessment or wood industry. By using allometry equations (82) it is possible to obtain biomass information from canopy height. Some studies have demonstrated that current interferometric techniques applied to airborne Synthetic Aperture Radar (SAR) images can provide fairly accurate estimates of tree height (45, 52, 53, 54). Space based interferometric methods can provide global estimates of canopy height but they require very accurate orbit information. In this work the ability of the recently launched SAR satellites TerraSAR-X and TanDEM-X to estimate canopy height is evaluated.To do this, a complete interferometric processing chain is created including SAR data reading into memory, complex interferogram calculation, interferogram flattening by at Earth approximation and image transformation to geographical coordinates.Finally the resulting phase height maps are compared with a digital elevation model and a canopy height model of the terrain under study as well as with X-band E-SAR data from the FINSAR campaign (52, 53, 54) of the same area

    UAVSAR: A new NASA airborne SAR system for science and technology research

    Get PDF
    NASA’s Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Arial Vehicle) but will initially be demonstrated on a on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO)
    corecore