1,840 research outputs found

    Asymptotic stability for neural networks with mixed time-delays: The discrete-time case

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first proved under mild conditions. By constructing a new Lyapnuov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation

    Robust Stability Under Mixed Time Varying, Time Invariant and Parametric Uncertainty

    Get PDF
    Robustness analysis is considered for systems with structured uncertainty involving a combination of linear time-invariant and linear time-varying perturbations, and parametric uncertainty. A necessary and sufficient condition for robust stability in terms of the structured singular value μ is obtained, based on a finite augmentation of the original problem. The augmentation corresponds to considering the system at a fixed number of frequencies. Sufficient conditions based on scaled small-gain are also considered and characterized

    Robust ℋ2 Performance: Guaranteeing Margins for LQG Regulators

    Get PDF
    This paper shows that ℋ2 (LQG) performance specifications can be combined with structured uncertainty in the system, yielding robustness analysis conditions of the same nature and computational complexity as the corresponding conditions for ℋ∞ performance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to be necessary and sufficient under the same conditions as in the ℋ∞ case. With these results, the tools of robust control can be viewed as coming full circle to treat the problem where it all began: guaranteeing margins for LQG regulators

    Finite-region boundedness and stabilization for 2D continuous-discrete systems in Roesser model

    Get PDF
    This paper investigates the finite-region boundedness (FRB) and stabilization problems for two-dimensional continuous-discrete linear Roesser models subject to two kinds of disturbances. For two-dimensional continuous-discrete system, we first put forward the concepts of finite-region stability and FRB. Then, by establishing special recursive formulas, sufficient conditions of FRB for two-dimensional continuous-discrete systems with two kinds of disturbances are formulated. Furthermore, we analyze the finite-region stabilization issues for the corresponding two-dimensional continuous-discrete systems and give generic sufficient conditions and sufficient conditions that can be verified by linear matrix inequalities for designing the state feedback controllers which ensure the closed-loop systems FRB. Finally, viable experimental results are demonstrated by illustrative examples

    Static output-feedback stabilization of discrete-time Markovian jump linear systems: a system augmentation approach

    No full text
    This paper studies the static output-feedback (SOF) stabilization problem for discrete-time Markovian jump systems from a novel perspective. The closed-loop system is represented in a system augmentation form, in which input and gain-output matrices are separated. By virtue of the system augmentation, a novel necessary and sufficient condition for the existence of desired controllers is established in terms of a set of nonlinear matrix inequalities, which possess a monotonic structure for a linearized computation, and a convergent iteration algorithm is given to solve such inequalities. In addition, a special property of the feasible solutions enables one to further improve the solvability via a simple D-K type optimization on the initial values. An extension to mode-independent SOF stabilization is provided as well. Compared with some existing approaches to SOF synthesis, the proposed one has several advantages that make it specific for Markovian jump systems. The effectiveness and merit of the theoretical results are shown through some numerical example

    Robust variance-constrained H∞ control for stochastic systems with multiplicative noises

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, the robust variance-constrained H∞ control problem is considered for uncertain stochastic systems with multiplicative noises. The norm-bounded parametric uncertainties enter into both the system and output matrices. The purpose of the problem is to design a state feedback controller such that, for all admissible parameter uncertainties, (1) the closed-loop system is exponentially mean-square quadratically stable; (2) the individual steady-state variance satisfies given upper bound constraints; and (3) the prescribed noise attenuation level is guaranteed in an H∞ sense with respect to the additive noise disturbances. A general framework is established to solve the addressed multiobjective problem by using a linear matrix inequality (LMI) approach, where the required stability, the H∞ characterization and variance constraints are all easily enforced. Within such a framework, two additional optimization problems are formulated: one is to optimize the H∞ performance, and the other is to minimize the weighted sum of the system state variances. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out
    corecore