1,335 research outputs found

    Risk Minimization, Regret Minimization and Progressive Hedging Algorithms

    Get PDF
    This paper begins with a study on the dual representations of risk and regret measures and their impact on modeling multistage decision making under uncertainty. A relationship between risk envelopes and regret envelopes is established by using the Lagrangian duality theory. Such a relationship opens a door to a decomposition scheme, called progressive hedging, for solving multistage risk minimization and regret minimization problems. In particular, the classical progressive hedging algorithm is modified in order to handle a new class of linkage constraints that arises from reformulations and other applications of risk and regret minimization problems. Numerical results are provided to show the efficiency of the progressive hedging algorithms.Comment: 21 pages, 2 figure

    Lagrangian Relaxation for Mixed-Integer Linear Programming: Importance, Challenges, Recent Advancements, and Opportunities

    Full text link
    Operations in areas of importance to society are frequently modeled as Mixed-Integer Linear Programming (MILP) problems. While MILP problems suffer from combinatorial complexity, Lagrangian Relaxation has been a beacon of hope to resolve the associated difficulties through decomposition. Due to the non-smooth nature of Lagrangian dual functions, the coordination aspect of the method has posed serious challenges. This paper presents several significant historical milestones (beginning with Polyak's pioneering work in 1967) toward improving Lagrangian Relaxation coordination through improved optimization of non-smooth functionals. Finally, this paper presents the most recent developments in Lagrangian Relaxation for fast resolution of MILP problems. The paper also briefly discusses the opportunities that Lagrangian Relaxation can provide at this point in time

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted 2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness
    corecore