15 research outputs found

    Sliding at first order: Higher-order momentum distributions for discontinuous image registration

    Full text link
    In this paper, we propose a new approach to deformable image registration that captures sliding motions. The large deformation diffeomorphic metric mapping (LDDMM) registration method faces challenges in representing sliding motion since it per construction generates smooth warps. To address this issue, we extend LDDMM by incorporating both zeroth- and first-order momenta with a non-differentiable kernel. This allows to represent both discontinuous deformation at switching boundaries and diffeomorphic deformation in homogeneous regions. We provide a mathematical analysis of the proposed deformation model from the viewpoint of discontinuous systems. To evaluate our approach, we conduct experiments on both artificial images and the publicly available DIR-Lab 4DCT dataset. Results show the effectiveness of our approach in capturing plausible sliding motion

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    A signal processing framework for the analysis and application of chaotic systems

    Get PDF
    "May 1995."Includes bibliographical references (p. 157-161).Supported in part by the Department of the Navy, Office of the Chief of Naval Research as part of the Advanced Research Projects Agency's RASSP Program. N00014-93-1-0686 Supported in part by the U.S. Air Force Office of Scientific Research. AFOSR-91-0034-CSteven H. Isabelle

    Integrable Approximations for Dynamical Tunneling

    Get PDF
    Generic Hamiltonian systems have a mixed phase space, where classically disjoint regions of regular and chaotic motion coexist. For many applications it is useful to approximate the regular dynamics of such a mixed system H by an integrable approximation Hreg. We present a new, iterative method to construct such integrable approximations. The method is based on the construction of an integrable approximation in action representation which is then improved in phase space by iterative applications of canonical transformations. In contrast to other known approaches, our method remains applicable to strongly non-integrable systems H. We present its application to 2D maps and 2D billiards. Based on the obtained integrable approximations we finally discuss the theoretical description of dynamical tunneling in mixed systems.Typische Hamiltonsche Systeme haben einen gemischten Phasenraum, in dem disjunkte Bereiche klassisch regulĂ€rer und chaotischer Dynamik koexistieren. FĂŒr viele Anwendungen ist es zweckmĂ€ĂŸig, die regulĂ€re Dynamik eines solchen gemischten Systems H durch eine integrable NĂ€herung Hreg zu beschreiben. Wir stellen eine neue, iterative Methode vor, um solche integrablen NĂ€herungen zu konstruieren. Diese Methode basiert auf der Konstruktion einer integrablen NĂ€herung in Winkel-Wirkungs-Variablen, die im Phasenraum durch iterative Anwendungen kanonischer Transformationen verbessert wird. Im Gegensatz zu bisher bekannten Verfahren bleibt unsere Methode auch auf stark nichtintegrable Systeme H anwendbar. Wir demonstrieren sie anhand von 2D-Abbildungen und 2D-Billards. Mit den gewonnenen integrablen NĂ€herungen diskutieren wir schließlich die theoretische Beschreibung von dynamischem Tunneln in gemischten Systemen

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Non-Hermitian physics

    Get PDF

    Estimation and detection with chaotic systems

    Get PDF
    Includes bibliographical references (p. 209-214).Supported by the U.S. Air Force Office of Scientific Research under the Augmentation Awards for Science and Engineering Research Training Program Grant. F49620-92-J-0255 Supported by the U.S. Air Force Office of Scientific Research. AFOSR-91-0034-C Supported by the U.S. Navy Office of Naval Research. N00014-93-1-0686 Supported by Lockheed Sanders, Inc. under a U.S. Navy Office of Naval Research contract. N00014-91-C-0125Michael D. Richard

    Geometric integration of differential equations

    Get PDF
    corecore