33 research outputs found

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast

    Conflicting Objectives in Decisions

    Get PDF
    This book deals with quantitative approaches in making decisions when conflicting objectives are present. This problem is central to many applications of decision analysis, policy analysis, operational research, etc. in a wide range of fields, for example, business, economics, engineering, psychology, and planning. The book surveys different approaches to the same problem area and each approach is discussed in considerable detail so that the coverage of the book is both broad and deep. The problem of conflicting objectives is of paramount importance, both in planned and market economies, and this book represents a cross-cultural mixture of approaches from many countries to the same class of problem

    Multiobjective Problems of Mathematical Programming; Proceedings of an International Conference, Yalta, USSR, October 26 - November 2, 1988

    Get PDF
    IIASA's approach to research in Multiple Objective Decision Support, Multiple Criteria Optimization (MCO) and related topics assumes a high level of synergy between three main components: methodological and theoretical backgrounds, computer implementation and decision support systems and real life applications. This synergy is reflected in the subjects of papers presented at the Conference as well as in the structure of the Proceedings which is divided into three main sections. In the first section, "Theory and Methodology of Multiple Criteria Optimization," 21 papers discussing new theoretical developments in MCO are presented. The second section, "Applications of Multiple Criteria Optimization, " contains nine papers dealing with real-life applications of MCO. Five papers on the application of MCO in the development of Decision Support Systems are included in the final section, "Multiple Criteria Decision Support." Among the important outcomes of this Conference were conclusions regarding further directions of research for Multiple Criteria Optimization, in particular, in the context of cooperation between scientists from Eastern and Western countries

    On multiobjective optimization from the nonsmooth perspective

    Get PDF
    Practical applications usually have multiobjective nature rather than having only one objective to optimize. A multiobjective problem cannot be solved with a single-objective solver as such. On the other hand, optimization of only one objective may lead to an arbitrary bad solutions with respect to other objectives. Therefore, special techniques for multiobjective optimization are vital. In addition to multiobjective nature, many real-life problems have nonsmooth (i.e. not continuously differentiable) structure. Unfortunately, many smooth (i.e. continuously differentiable) methods adopt gradient-based information which cannot be used for nonsmooth problems. Since both of these characteristics are relevant for applications, we focus here on nonsmooth multiobjective optimization. As a research topic, nonsmooth multiobjective optimization has gained only limited attraction while the fields of nonsmooth single-objective and smooth multiobjective optimization distinctively have attained greater interest. This dissertation covers parts of nonsmooth multiobjective optimization in terms of theory, methodology and application. Bundle methods are widely considered as effective and reliable solvers for single-objective nonsmooth optimization. Therefore, we investigate the use of the bundle idea in the multiobjective framework with three different methods. The first one generalizes the single-objective proximal bundle method for the nonconvex multiobjective constrained problem. The second method adopts the ideas from the classical steepest descent method into the convex unconstrained multiobjective case. The third method is designed for multiobjective problems with constraints where both the objectives and constraints can be represented as a difference of convex (DC) functions. Beside the bundle idea, all three methods are descent, meaning that they produce better values for each objective at each iteration. Furthermore, all of them utilize the improvement function either directly or indirectly. A notable fact is that none of these methods use scalarization in the traditional sense. With the scalarization we refer to the techniques transforming a multiobjective problem into the single-objective one. As the scalarization plays an important role in multiobjective optimization, we present one special family of achievement scalarizing functions as a representative of this category. In general, the achievement scalarizing functions suit well in the interactive framework. Thus, we propose the interactive method using our special family of achievement scalarizing functions. In addition, this method utilizes the above mentioned descent methods as tools to illustrate the range of optimal solutions. Finally, this interactive method is used to solve the practical case studies of the scheduling the final disposal of the spent nuclear fuel in Finland.Käytännön optimointisovellukset ovat usein luonteeltaan ennemmin moni- kuin yksitavoitteisia. Erityisesti monitavoitteisille tehtäville suunnitellut menetelmät ovat tarpeen, sillä monitavoitteista optimointitehtävää ei sellaisenaan pysty ratkaisemaan yksitavoitteisilla menetelmillä eikä vain yhden tavoitteen optimointi välttämättä tuota mielekästä ratkaisua muiden tavoitteiden suhteen. Monitavoitteisuuden lisäksi useat käytännön tehtävät ovat myös epäsileitä siten, etteivät niissä esiintyvät kohde- ja rajoitefunktiot välttämättä ole kaikkialla jatkuvasti differentioituvia. Kuitenkin monet optimointimenetelmät hyödyntävät gradienttiin pohjautuvaa tietoa, jota ei epäsileille funktioille ole saatavissa. Näiden molempien ominaisuuksien ollessa keskeisiä sovelluksia ajatellen, keskitytään tässä työssä epäsileään monitavoiteoptimointiin. Tutkimusalana epäsileä monitavoiteoptimointi on saanut vain vähän huomiota osakseen, vaikka sekä sileä monitavoiteoptimointi että yksitavoitteinen epäsileä optimointi erikseen ovat aktiivisia tutkimusaloja. Tässä työssä epäsileää monitavoiteoptimointia on käsitelty niin teorian, menetelmien kuin käytännön sovelluksien kannalta. Kimppumenetelmiä pidetään yleisesti tehokkaina ja luotettavina menetelminä epäsileän optimointitehtävän ratkaisemiseen ja siksi tätä ajatusta hyödynnetään myös tässä väitöskirjassa kolmessa eri menetelmässä. Ensimmäinen näistä yleistää yksitavoitteisen proksimaalisen kimppumenetelmän epäkonveksille monitavoitteiselle rajoitteiselle tehtävälle sopivaksi. Toinen menetelmä hyödyntää klassisen nopeimman laskeutumisen menetelmän ideaa konveksille rajoitteettomalle tehtävälle. Kolmas menetelmä on suunniteltu erityisesti monitavoitteisille rajoitteisille tehtäville, joiden kohde- ja rajoitefunktiot voidaan ilmaista kahden konveksin funktion erotuksena. Kimppuajatuksen lisäksi kaikki kolme menetelmää ovat laskevia eli ne tuottavat joka kierroksella paremman arvon jokaiselle tavoitteelle. Yhteistä on myös se, että nämä kaikki hyödyntävät parannusfunktiota joko suoraan sellaisenaan tai epäsuorasti. Huomattavaa on, ettei yksikään näistä menetelmistä hyödynnä skalarisointia perinteisessä merkityksessään. Skalarisoinnilla viitataan menetelmiin, joissa usean tavoitteen tehtävä on muutettu sopivaksi yksitavoitteiseksi tehtäväksi. Monitavoiteoptimointimenetelmien joukossa skalarisoinnilla on vankka jalansija. Esimerkkinä skalarisoinnista tässä työssä esitellään yksi saavuttavien skalarisointifunktioiden perhe. Yleisesti saavuttavat skalarisointifunktiot soveltuvat hyvin interaktiivisten menetelmien rakennuspalikoiksi. Täten kuvaillaan myös esiteltyä skalarisointifunktioiden perhettä hyödyntävä interaktiivinen menetelmä, joka lisäksi hyödyntää laskevia menetelmiä optimaalisten ratkaisujen havainnollistamisen apuna. Lopuksi tätä interaktiivista menetelmää käytetään aikatauluttamaan käytetyn ydinpolttoaineen loppusijoitusta Suomessa

    Probabilistic Analysis of Discrete Optimization Problems

    Get PDF
    We investigate the performance of exact algorithms for hard optimization problems under random inputs. In particular, we prove various structural properties that lead to two general average-case analyses applicable to a large class of optimization problems. In the first part we study the size of the Pareto curve for binary optimization problems with two objective functions. Pareto optimal solutions can be seen as trade-offs between multiple objectives. While in the worst case, the cardinality of the Pareto curve is exponential in the number of variables, we prove polynomial upper bounds for the expected number of Pareto points when at least one objective function is linear and exhibits sufficient randomness. Our analysis covers general probability distributions with finite mean and, in its most general form, can even handle different probability distributions for the coefficients of the objective function. We apply this result to the constrained shortest path problem and to the knapsack problem. There are algorithms for both problems that can enumerate all Pareto optimal solutions very efficiently, so that our polynomial upper bound on the size of the Pareto curve implies that the expected running time of these algorithms is polynomial as well. For example, we obtain a bound of O(n4) for uniformly random knapsack instances, where n denotes the number of available items. In the second part we investigate the performance of knapsack core algorithms, the predominant algorithmic concept in practice. The idea is to fix most variables to the values prescribed by the optimal fractional solution. The reduced problem has only polylogarithmic size on average and is solved using the Nemhauser/Ullmann algorithm. Applying the analysis of the first part, we can prove an upper bound of O(npolylog n) on the expected running time. Furthermore, we extend our analysis to a harder class of random input distributions. Finally, we present an experimental study of knapsack instances for various random input distributions. We investigate structural properties including the size of the Pareto curve and the integrality gap and compare the running time between different implementations of core algorithms. The last part of the thesis introduces a semi-random input model for constrained binary optimization problems, which enables us to perform a smoothed analysis for a large class of optimization problems while at the same time taking care of the combinatorial structure of individual problems. Our analysis is centered around structural properties, called winner, loser, and feasibility gap. These gaps describe the sensitivity of the optimal solution to slight perturbations of the input and can be used to bound the necessary accuracy as well as the complexity for solving an instance. We exploit the gaps in form of an adaptive rounding scheme increasing the accuracy of calculation until the optimal solution is found. The strength of our techniques is illustrated by applications to various NP-hard optimization problems for which we obtain the rst algorithms with polynomial average-case/smoothed complexity

    Evolutionary multi-objective optimization in uncertain environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Levenberg-Marquardt Algorithms for Nonlinear Equations, Multi-objective Optimization, and Complementarity Problems

    Get PDF
    The Levenberg-Marquardt algorithm is a classical method for solving nonlinear systems of equations that can come from various applications in engineering and economics. Recently, Levenberg-Marquardt methods turned out to be a valuable principle for obtaining fast convergence to a solution of the nonlinear system if the classical nonsingularity assumption is replaced by a weaker error bound condition. In this way also problems with nonisolated solutions can be treated successfully. Such problems increasingly arise in engineering applications and in mathematical programming. In this thesis we use Levenberg-Marquardt algorithms to deal with nonlinear equations, multi-objective optimization and complementarity problems. We develop new algorithms for solving these problems and investigate their convergence properties. For sufficiently smooth nonlinear equations we provide convergence results for inexact Levenberg-Marquardt type algorithms. In particular, a sharp bound on the maximal level of inexactness that is sufficient for a quadratic (or a superlinear) rate of convergence is derived. Moreover, the theory developed is used to show quadratic convergence of a robust projected Levenberg-Marquardt algorithm. The use of Levenberg-Marquardt type algorithms for unconstrained multi-objective optimization problems is investigated in detail. In particular, two globally and locally quadratically convergent algorithms for these problems are developed. Moreover, assumptions under which the error bound condition for a Pareto-critical system is fulfilled are derived. We also treat nonsmooth equations arising from reformulating complementarity problems by means of NCP functions. For these reformulations, we show that existing smoothness conditions are not satisfied at degenerate solutions. Moreover, we derive new results for positively homogeneous functions. The latter results are used to show that appropriate weaker smoothness conditions (enabling a local Q-quadratic rate of convergence) hold for certain reformulations.Der Levenberg-Marquardt-Algorithmus ist ein klassisches Verfahren zur Lösung von nichtlinearen Gleichungssystemen, welches in verschiedenen Anwendungen der Ingenieur-und Wirtschaftswissenschaften vorkommen kann. Kürzlich, erwies sich das Verfahren als ein wertvolles Instrument für die Gewährleistung einer schnelleren Konvergenz für eine Lösung des nichtlinearen Systems, wenn die klassische nichtsinguläre Annahme durch eine schwächere Fehlerschranke der eingebundenen Bedingung ersetzt wird. Auf diese Weise, lassen sich ebenfalls Probleme mit nicht isolierten Lösungen erfolgreich behandeln. Solche Probleme ergeben sich zunehmend in den praktischen, ingenieurwissenschaftlichen Anwendungen und in der mathematischen Programmierung. In dieser Arbeit verwenden wir Levenberg-Marquardt- Algorithmus für nichtlinearere Gleichungen, multikriterielle Optimierung - und nichtlineare Komplementaritätsprobleme. Wir entwickeln neue Algorithmen zur Lösung dieser Probleme und untersuchen ihre Konvergenzeigenschaften. Für ausreichend differenzierbare nichtlineare Gleichungen, analysieren und bieten wir Konvergenzergebnisse für ungenaue Levenberg-Marquardt-Algorithmen Typen. Insbesondere, bieten wir eine strenge Schranke für die maximale Höhe der Ungenauigkeit, die ausreichend ist für eine quadratische (oder eine superlineare) Rate der Konvergenz. Darüber hinaus, die entwickelte Theorie wird verwendet, um quadratische Konvergenz eines robusten projizierten Levenberg-Marquardt-Algorithmus zu zeigen. Die Verwendung von Levenberg-Marquardt-Algorithmen Typen für unbeschränkte multikriterielle Optimierungsprobleme im Detail zu untersucht. Insbesondere sind zwei globale und lokale quadratische konvergente Algorithmen für multikriterielle Optimierungsprobleme entwickelt worden. Die Annahmen wurden hergeleitet, unter welche die Fehlerschranke der eingebundenen Bedingung für ein Pareto-kritisches System erfüllt ist. Wir behandeln auch nicht differenzierbare nichtlineare Gleichungen aus Umformulierung der nichtlinearen Komplementaritätsprobleme durch NCP-Funktionen. Wir zeigen für diese Umformulierungen, dass die bestehenden differenzierbaren Bedingungen nicht zufrieden mit degenerierten Lösungen sind. Außerdem, leiten wir neue Ergebnisse für positiv homogene NCP-Funktionen. Letztere Ergebnisse werden verwendet um zu zeigen, dass geeignete schwächeren differenzierbare Bedingungen (so dass eine lokale Q-quadratische Konvergenzgeschwindigkeit ermöglichen) für bestimmte Umformulierungen gelten

    Evolutionary multi-objective optimization in investment portfolio management

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore