1,191 research outputs found

    Spectrum Sharing in Dynamic Spectrum Access Networks: WPE-II Written Report

    Get PDF
    A study by Federal Communication Commission shows that most of the spectrum in current wireless networks is unused most of the time, while some spectrum is heavily used. Recently dynamic spectrum access (DSA) has been proposed to solve this spectrum inefficiency problem, by allowing users to opportunistically access to unused spectrum. One important question in DSA is how to efficiently share spectrum among users so that spectrum utilization can be increased and wireless interference can be reduced. Spectrum sharing can be formalized as a graph coloring problem. In this report we focus on surveying spectrum sharing techniques in DSA networks and present four representative techniques in different taxonomy domains, including centralized, distributed with/without common control channel, and a real case study of DSA networks --- DARPA neXt Gen- eration (XG) radios. Their strengths and limitations are evaluated and compared in detail. Finally, we discuss the challenges in current spectrum sharing research and possible future directions

    Planning assistance for the 30/20 GHz program, volume 1

    Get PDF
    Functional requirements for the 30/20 GHz communication system, planning assistance for the 30/20 GHz program, and a review of specified conceptual designs and recommendations are provided

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Efficient shared segment protection in optical networks

    Get PDF
    This thesis introduces a new shared segment protection scheme that ensures both node and link protection in an efficient manner in terms of cost. Although the segment protection scheme exhibits an interesting compromise between link and path protection schemes and attempts to encompass all their advantages, it has been much less explored than the other protection approaches. The proposed work investigates two different Shared Segment Protection (SSP) schemes: Basic Shared Segment Protection (BSSP) and a new segment protection, called Shared Segment Protection with segment Overlap (SSPO). For both BSSP and SSPO schemes, we propose two novel efficient and scalable ILP formulations, based on a column generation mathematical modeling. SSPO offers more advantages over BSSP as it ensures both node and link protections, in addition to shorter delays. It is not necessarily more expensive while BSSP ensures only link protection. Indeed, depending on the network topology and the traffic instances, it can be shown that neither of the two SSP schemes is dominant in terms of cost. The mathematical models have been solved using column generation techniques. Simulations have been conducted to validate the two segment protection models and to evaluate the performance of the two segment protection schemes under different traffic scenarios. In addition, we have estimated when an additional cost (and how much) is needed in order to ensure node protection

    Network Protocols

    Get PDF

    NASA Tech Briefs, October 2011

    Get PDF
    Topics covered include: Laser Truss Sensor for Segmented Telescope Phasing; Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions; Optical Sensors for Monitoring Gamma and Neutron Radiation; Compliant Tactile Sensors; Cytometer on a Chip; Measuring Input Thresholds on an Existing Board; Scanning and Defocusing Properties of Microstrip Reflectarray Antennas; Cable Tester Box; Programmable Oscillator; Fault-Tolerant, Radiation-Hard DSP; Sub-Shot Noise Power Source for Microelectronics; Asynchronous Message Service Reference Implementation; Zero-Copy Objects System; Delay and Disruption Tolerant Networking MACHETE Model; Contact Graph Routing; Parallel Eclipse Project Checkout; Technique for Configuring an Actively Cooled Thermal Shield in a Flight System; Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes; Li-Ion Cells Employing Electrolytes with Methyl Propionate and Ethyl Butyrate Co-Solvents; Improved Devices for Collecting Sweat for Chemical Analysis; Tissue Photolithography; Method for Impeding Degradation of Porous Silicon Structures; External Cooling Coupled to Reduced Extremity Pressure Device; A Zero-Gravity Cup for Drinking Beverages in Microgravity; Co-Flow Hollow Cathode Technology; Programmable Aperture with MEMS Microshutter Arrays; Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas; Adaptive System Modeling for Spacecraft Simulation; Lidar-Based Navigation Algorithm for Safe Lunar Landing; Tracking Object Existence From an Autonomous Patrol Vehicle; Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications; and Architecture for a 1-GHz Digital RADAR

    The influence of protocol choice on network performance

    Get PDF
    Bibliography: leaves 100-102.Computer communication networks are a vital link in providing many of the services that we use daily, and our reliance on these networks is on the increase. The growing use of networks is driving network design towards greater performance. The greater need for network connectivity and increased performance makes the study of network performance constraints important. Networks consist of both hardware and software components. Currently great advances are being made in network hardware, resulting in advances in the available raw network performance. In this thesis, I will show through measurement that it is difficult to harness all the raw performance and to make it available to carry network services. I will also identify some of the factors limiting the full utilization of a high speed network

    GROK-FPGA: Generating Real on-Chip Knowledge for FPGA Fine-Grain Delays Using Timing Extraction

    Get PDF
    Circuit variation is one of the biggest problems to overcome if Moore\u27s Law is to continue. It is no longer possible to maintain an abstraction of identical devices without huge yield losses, performance penalties, and energy costs. Current techniques such as margining and grade binning are used to deal with this problem. However, they tend to be conservative, offering limited solutions that will not scale as variation increases. Conventional circuits use limited tests and statistical models to determine the margining and binning required to counteract variation. If the limited tests fail, the whole chip is discarded. On the other hand, reconfigurable circuits, such as FPGAs, can use more fine-grained, aggressive techniques that carefully choose which resources to use in order to mitigate variation. Knowing which resources to use and avoid, however, requires measurement of underlying variation. We present Timing Extraction, a methodology that allows measurement of process variation without expensive testers nor highly invasive techniques, rather, relying only on resources already available on conventional FPGAs. It takes advantage of the fact that we can measure the delay of logic paths between any two registers. Measuring enough paths, provides the information necessary to decompose the delay of each path into individual components-essentially, forming a system of linear equations. Determining which paths to measure requires simple graph transformation algorithms applied to a representation of the FPGA circuit. Ultimately, this process decomposes the FPGA into individual components and identifies which paths to measure for computing the delay of individual components. We apply Timing Extraction to 18 commercially available Altera Cyclone III (65 nm) FPGAs. We measure 22×28 logic clusters and the interconnect within and between cluster. Timing Extraction decomposes this region into 1,356,182 components, classified into 10 categories, requiring 2,736,556 path measurements. With an accuracy of ±3.2 ps, our measurements reveal regional variation on the order of 50 ps, systematic variation from 30 ps to 70 ps, and random variation in the clusters with σ=15 ps and in the interconnect with σ=62 ps
    corecore