71,133 research outputs found

    Nearly Optimal Sparse Group Testing

    Full text link
    Group testing is the process of pooling arbitrary subsets from a set of nn items so as to identify, with a minimal number of tests, a "small" subset of dd defective items. In "classical" non-adaptive group testing, it is known that when dd is substantially smaller than nn, Θ(dlog(n))\Theta(d\log(n)) tests are both information-theoretically necessary and sufficient to guarantee recovery with high probability. Group testing schemes in the literature meeting this bound require most items to be tested Ω(log(n))\Omega(\log(n)) times, and most tests to incorporate Ω(n/d)\Omega(n/d) items. Motivated by physical considerations, we study group testing models in which the testing procedure is constrained to be "sparse". Specifically, we consider (separately) scenarios in which (a) items are finitely divisible and hence may participate in at most γo(log(n))\gamma \in o(\log(n)) tests; or (b) tests are size-constrained to pool no more than ρo(n/d)\rho \in o(n/d)items per test. For both scenarios we provide information-theoretic lower bounds on the number of tests required to guarantee high probability recovery. In both scenarios we provide both randomized constructions (under both ϵ\epsilon-error and zero-error reconstruction guarantees) and explicit constructions of designs with computationally efficient reconstruction algorithms that require a number of tests that are optimal up to constant or small polynomial factors in some regimes of n,d,γ,n, d, \gamma, and ρ\rho. The randomized design/reconstruction algorithm in the ρ\rho-sized test scenario is universal -- independent of the value of dd, as long as ρo(n/d)\rho \in o(n/d). We also investigate the effect of unreliability/noise in test outcomes. For the full abstract, please see the full text PDF

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201

    Simple Codes and Sparse Recovery with Fast Decoding

    Full text link
    Construction of error-correcting codes achieving a designated minimum distance parameter is a central problem in coding theory. A classical and algebraic family of error-correcting codes studied for this purpose are the BCH codes. In this work, we study a very simple construction of linear codes that achieve a given distance parameter KK. Moreover, we design a simple, nearly optimal syndrome decoder for the code as well. The running time of the decoder is only logarithmic in the block length of the code, and nearly linear in the distance parameter KK. This decoder can be applied to exact for-all sparse recovery over any field, improving upon previous results with the same number of measurements. Furthermore, computation of the syndrome from a received word can be done in nearly linear time in the block length. We also demonstrate an application of these techniques in non-adaptive group testing, and construct simple explicit measurement schemes with O(K2log2N)O(K^2 \log^2 N) tests and O(K3log2N)O(K^3 \log^2 N) recovery time for identifying up to KK defectives in a population of size NN.Comment: 20 pages, 3 table

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009
    corecore