273 research outputs found

    User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias.

    Get PDF
    BackgroundData obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia.MethodsMulti-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias.ResultsACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated.ConclusionUser-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias

    Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update : Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing

    Get PDF
    With mounting data on its accuracy and prognostic value, cardiovascular magnetic resonance (CMR) is becoming an increasingly important diagnostic tool with growing utility in clinical routine. Given its versatility and wide range of quantitative parameters, however, agreement on specific standards for the interpretation and post-processing of CMR studies is required to ensure consistent quality and reproducibility of CMR reports. This document addresses this need by providing consensus recommendations developed by the Task Force for Post-Processing of the Society for Cardiovascular Magnetic Resonance (SCMR). The aim of the Task Force is to recommend requirements and standards for image interpretation and post-processing enabling qualitative and quantitative evaluation of CMR images. Furthermore, pitfalls of CMR image analysis are discussed where appropriate. It is an update of the original recommendations published 2013

    Load-Independent And Regional Measures Of Cardiac Function Via Real-Time Mri

    Get PDF
    LOAD-INDEPENDENT AND REGIONAL MEASURES OF CARDIAC FUNCTION VIA REAL-TIME MRI Francisco Jose Contijoch Robert C Gorman, MD Expansion of infarcted tissue during left ventricular (LV) remodeling after a myocardial infarction is associated with poor long-term prognosis. Several interventions have been developed to limit infarct expansion by modifying the material properties of the infarcted or surrounding borderzone tissue. Measures of myocardial function and material properties can be obtained non-invasively via imaging. However, these measures are sensitive to variations in loading conditions and acquisition of load-independent measures have been limited by surgically invasive procedures and limited spatial resolution. In this dissertation, a real-time magnetic resonance imaging (MRI) technique was validated in clinical patients and instrumented animals, several technical improvements in MRI acquisition and reconstruction were presented for improved imaging resolution, load-independent measures were obtained in animal studies via non-invasive imaging, and regional variations in function were measured in both na�ve and post-infarction animals. Specifically, a golden-angle radial MRI acquisition with non-Cartesian SENSE-based reconstruction with an exposure time less than 95 ms and a frame rate above 89 fps allows for accurate estimation of LV slice volume in clinical patients and instrumented animals. Two technical developments were pursued to improve image quality and spatial resolution. First, the slice volume obtained can be used as a self-navigator signal to generate retrospectively-gated, high-resolution datasets of multiple beat morphologies. Second, cross-correlation of the ECG with previously observed values resulted in accurate interpretation of cardiac phase in patients with arrhythmias and allowed for multi-shot imaging of dynamic scenarios. Synchronizing the measured LV slice volume with an LV pressure signal allowed for pressure-volume loops and corresponding load-independent measures of function to be obtained in instrumented animals. Acquiring LV slice volume at multiple slice locations revealed regional differences in contractile function. Motion-tracking of the myocardium during real-time imaging allowed for differences in contractile function between normal, borderzone, and infarcted myocardium to be measured. Lastly, application of real-time imaging to patients with arrhythmias revealed the variable impact of ectopic beats on global hemodynamic function, depending on frequency and ectopic pattern. This work established the feasibility of obtaining load-independent measures of function via real-time MRI and illustrated regional variations in cardiac function
    • …
    corecore