112 research outputs found

    Subspace Methods for Joint Sparse Recovery

    Full text link
    We propose robust and efficient algorithms for the joint sparse recovery problem in compressed sensing, which simultaneously recover the supports of jointly sparse signals from their multiple measurement vectors obtained through a common sensing matrix. In a favorable situation, the unknown matrix, which consists of the jointly sparse signals, has linearly independent nonzero rows. In this case, the MUSIC (MUltiple SIgnal Classification) algorithm, originally proposed by Schmidt for the direction of arrival problem in sensor array processing and later proposed and analyzed for joint sparse recovery by Feng and Bresler, provides a guarantee with the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank-defect or ill-conditioning. This situation arises with limited number of measurement vectors, or with highly correlated signal components. In this case MUSIC fails, and in practice none of the existing methods can consistently approach the fundamental limit. We propose subspace-augmented MUSIC (SA-MUSIC), which improves on MUSIC so that the support is reliably recovered under such unfavorable conditions. Combined with subspace-based greedy algorithms also proposed and analyzed in this paper, SA-MUSIC provides a computationally efficient algorithm with a performance guarantee. The performance guarantees are given in terms of a version of restricted isometry property. In particular, we also present a non-asymptotic perturbation analysis of the signal subspace estimation that has been missing in the previous study of MUSIC.Comment: submitted to IEEE transactions on Information Theory, revised versio

    Greedy-Like Algorithms for the Cosparse Analysis Model

    Get PDF
    The cosparse analysis model has been introduced recently as an interesting alternative to the standard sparse synthesis approach. A prominent question brought up by this new construction is the analysis pursuit problem -- the need to find a signal belonging to this model, given a set of corrupted measurements of it. Several pursuit methods have already been proposed based on 1\ell_1 relaxation and a greedy approach. In this work we pursue this question further, and propose a new family of pursuit algorithms for the cosparse analysis model, mimicking the greedy-like methods -- compressive sampling matching pursuit (CoSaMP), subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP). Assuming the availability of a near optimal projection scheme that finds the nearest cosparse subspace to any vector, we provide performance guarantees for these algorithms. Our theoretical study relies on a restricted isometry property adapted to the context of the cosparse analysis model. We explore empirically the performance of these algorithms by adopting a plain thresholding projection, demonstrating their good performance

    On the Power of Preconditioning in Sparse Linear Regression

    Full text link
    Sparse linear regression is a fundamental problem in high-dimensional statistics, but strikingly little is known about how to efficiently solve it without restrictive conditions on the design matrix. We consider the (correlated) random design setting, where the covariates are independently drawn from a multivariate Gaussian N(0,Σ)N(0,\Sigma) with Σ:n×n\Sigma : n \times n, and seek estimators w^\hat{w} minimizing (w^w)TΣ(w^w)(\hat{w}-w^*)^T\Sigma(\hat{w}-w^*), where ww^* is the kk-sparse ground truth. Information theoretically, one can achieve strong error bounds with O(klogn)O(k \log n) samples for arbitrary Σ\Sigma and ww^*; however, no efficient algorithms are known to match these guarantees even with o(n)o(n) samples, without further assumptions on Σ\Sigma or ww^*. As far as hardness, computational lower bounds are only known with worst-case design matrices. Random-design instances are known which are hard for the Lasso, but these instances can generally be solved by Lasso after a simple change-of-basis (i.e. preconditioning). In this work, we give upper and lower bounds clarifying the power of preconditioning in sparse linear regression. First, we show that the preconditioned Lasso can solve a large class of sparse linear regression problems nearly optimally: it succeeds whenever the dependency structure of the covariates, in the sense of the Markov property, has low treewidth -- even if Σ\Sigma is highly ill-conditioned. Second, we construct (for the first time) random-design instances which are provably hard for an optimally preconditioned Lasso. In fact, we complete our treewidth classification by proving that for any treewidth-tt graph, there exists a Gaussian Markov Random Field on this graph such that the preconditioned Lasso, with any choice of preconditioner, requires Ω(t1/20)\Omega(t^{1/20}) samples to recover O(logn)O(\log n)-sparse signals when covariates are drawn from this model.Comment: 73 pages, 5 figure
    corecore