767 research outputs found

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/ϵc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    Power assignment problems in wireless communication

    No full text
    A fundamental class of problems in wireless communication is concerned with the assignment of suitable transmission powers to wireless devices/stations such that the resulting communication graph satisfies certain desired properties and the overall energy consumed is minimized. Many concrete communication tasks in a wireless network like broadcast, multicast, point-to-point routing, creation of a communication backbone, etc. can be regarded as such a power assignment problem. This paper considers several problems of that kind; for example one problem studied before in (Vittorio Bil{\`o} et al: Geometric Clustering to Minimize the Sum of Cluster Sizes, ESA 2005) and (Helmut Alt et al.: Minimum-cost coverage of point sets by disks, SCG 2006) aims to select and assign powers to kk of the stations such that all other stations are within reach of at least one of the selected stations. We improve the running time for obtaining a (1+ϵ)(1+\epsilon)-approximate solution for this problem from n((α/ϵ)O(d))n^{((\alpha/\epsilon)^{O(d)})} as reported by Bil{\`o} et al. (see Vittorio Bil{\`o} et al: Geometric Clustering to Minimize the Sum of Cluster Sizes, ESA 2005) to O(n+(k2d+1ϵd)min{  2k,    (α/ϵ)O(d)  })O\left( n+ {\left(\frac{k^{2d+1}}{\epsilon^d}\right)}^{ \min{\{\; 2k,\;\; (\alpha/\epsilon)^{O(d)} \;\}} } \right) that is, we obtain a running time that is \emph{linear} in the network size. Further results include a constant approximation algorithm for the TSP problem under squared (non-metric!) edge costs, which can be employed to implement a novel data aggregation protocol, as well as efficient schemes to perform kk-hop multicasts
    corecore