26 research outputs found

    Generalized packing designs

    Full text link
    Generalized tt-designs, which form a common generalization of objects such as tt-designs, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of tt-designs, \emph{Discrete Math.}\ {\bf 309} (2009), 4835--4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes surprising connections which these generalized designs have with various known classes of combinatorial designs, including Howell designs, partial Latin squares and several classes of triple systems, and also concepts such as resolvability and block colouring of ordinary designs and packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on the size of a generalized packing design and construct optimal generalized packings in certain cases. In particular, we provide methods for constructing maximum generalized packings with t=2t=2 and block size k=3k=3 or 4.Comment: 38 pages, 2 figures, 5 tables, 2 appendices. Presented at 23rd British Combinatorial Conference, July 201

    Computing the chromatic number of t-(v,k,[lambda]) designs

    Get PDF
    Colouring t-designs has previously been shown to be an NP-complete problem; heuristics and a practical algorithm for this problem were developed for this thesis; the algorithm was then employed to find the chromatic numbers of the sixteen non- isomorphic 2-(25, 4, 1) designs and the four cyclic 2-(19, 3, 1) designs. This thesis additionally examines the existing literature on colouring and finding chromatic numbers of t-designs

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Nearly Kirkman triple systems of order 18 and Hanani triple systems of order 19

    No full text
    A Hanani triple system of order 6n+1, HATS(6n+1), is a decomposition of the complete graph K6n+1 into 3n sets of 2n disjoint triangles and one set of n disjoint triangles. A nearly Kirkman triple system of order 6n, NKTS(6n), is a decomposition of K6n-F into 3n-1 sets of 2n disjoint triangles; here F is a one-factor of K6n. The Hanani triple systems of order 6n+1 and the nearly Kirkman triple systems of order 6n can be classified using the classification of the Steiner triple systems of order 6n+1. This is carried out here for n=3: There are 3787983639 isomorphism classes of HATS(19)s and 25328 isomorphism classes of NKTS(18)s. Several properties of the classified systems are tabulated. In particular, seven of the NKTS(18)s have orthogonal resolutions, and five of the HATS(19)s admit a pair of resolutions in which the almost parallel classes are orthogonal

    Hypergraph matchings and designs

    Full text link
    We survey some aspects of the perfect matching problem in hypergraphs, with particular emphasis on structural characterisation of the existence problem in dense hypergraphs and the existence of designs.Comment: 19 pages, for the 2018 IC

    Breakout group allocation schedules and the social golfer problem with adjacent group sizes

    Get PDF
    The current pandemic has led schools and universities to turn to online meeting software solutions such as Zoom and Microsoft Teams. The teaching experience can be enhanced via the use of breakout rooms for small group interaction. Over the course of a class (or over several classes), the class will be allocated to breakout groups multiple times over several rounds. It is desirable to mix the groups as much as possible, the ideal being that no two students appear in the same group in more than one round. In this paper, we discuss how the problem of scheduling balanced allocations of students to sequential breakout rooms directly corresponds to a novel variation of a well-known problem in combinatorics (the social golfer problem), which we call the social golfer problem with adjacent group sizes. We explain how solutions to this problem can be obtained using constructions from combinatorial design theory and how they can be used to obtain good, balanced breakout room allocation schedules. We present our solutions for up to 50 students and introduce an online resource that educators can access to immediately generate suitable allocation schedules
    corecore