62,025 research outputs found

    Ensembles of Randomized Time Series Shapelets Provide Improved Accuracy while Reducing Computational Costs

    Full text link
    Shapelets are discriminative time series subsequences that allow generation of interpretable classification models, which provide faster and generally better classification than the nearest neighbor approach. However, the shapelet discovery process requires the evaluation of all possible subsequences of all time series in the training set, making it extremely computation intensive. Consequently, shapelet discovery for large time series datasets quickly becomes intractable. A number of improvements have been proposed to reduce the training time. These techniques use approximation or discretization and often lead to reduced classification accuracy compared to the exact method. We are proposing the use of ensembles of shapelet-based classifiers obtained using random sampling of the shapelet candidates. Using random sampling reduces the number of evaluated candidates and consequently the required computational cost, while the classification accuracy of the resulting models is also not significantly different than that of the exact algorithm. The combination of randomized classifiers rectifies the inaccuracies of individual models because of the diversity of the solutions. Based on the experiments performed, it is shown that the proposed approach of using an ensemble of inexpensive classifiers provides better classification accuracy compared to the exact method at a significantly lesser computational cost

    Highly comparative feature-based time-series classification

    Full text link
    A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation

    Self-labeling techniques for semi-supervised time series classification: an empirical study

    Get PDF
    An increasing amount of unlabeled time series data available render the semi-supervised paradigm a suitable approach to tackle classification problems with a reduced quantity of labeled data. Self-labeled techniques stand out from semi-supervised classification methods due to their simplicity and the lack of strong assumptions about the distribution of the labeled and unlabeled data. This paper addresses the relevance of these techniques in the time series classification context by means of an empirical study that compares successful self-labeled methods in conjunction with various learning schemes and dissimilarity measures. Our experiments involve 35 time series datasets with different ratios of labeled data, aiming to measure the transductive and inductive classification capabilities of the self-labeled methods studied. The results show that the nearest-neighbor rule is a robust choice for the base classifier. In addition, the amending and multi-classifier self-labeled-based approaches reveal a promising attempt to perform semi-supervised classification in the time series context

    DTW-Global Constraint Learning Using Tabu Search Algorithm

    Get PDF
    AbstractMany methods have been proposed to measure the similarity between time series data sets, each with advantages and weaknesses. It is to choose the most appropriate similarity measure depending on the intended application domain and data considered. The performance of machine learning algorithms depends on the metric used to compare two objects. For time series, Dynamic Time Warping (DTW) is the most appropriate distance measure used. Many variants of DTW intended to accelerate the calculation of this distance are proposed. The distance learning is a subject already well studied. Indeed Data Mining tools, such as the algorithm of k-Means clustering, and K-Nearest Neighbor classification, require the use of a similarity/distance measure. This measure must be adapted to the application domain. For this reason, it is important to have and develop effective methods of computation and algorithms that can be applied to a large data set integrating the constraints of the specific field of study. In this paper a new hybrid approach to learn a global constraint of DTW distance is proposed. This approach is based on Large Margin Nearest Neighbors classification and Tabu Search algorithm. Experiments show the effectiveness of this approach to improve time series classification results

    Learning Embeddings for Indexing, Retrieval, and Classification, with Applications to Object and Shape Recognition in Image Databases

    Full text link
    Nearest neighbor retrieval is the task of identifying, given a database of objects and a query object, the objects in the database that are the most similar to the query. Retrieving nearest neighbors is a necessary component of many practical applications, in fields as diverse as computer vision, pattern recognition, multimedia databases, bioinformatics, and computer networks. At the same time, finding nearest neighbors accurately and efficiently can be challenging, especially when the database contains a large number of objects, and when the underlying distance measure is computationally expensive. This thesis proposes new methods for improving the efficiency and accuracy of nearest neighbor retrieval and classification in spaces with computationally expensive distance measures. The proposed methods are domain-independent, and can be applied in arbitrary spaces, including non-Euclidean and non-metric spaces. In this thesis particular emphasis is given to computer vision applications related to object and shape recognition, where expensive non-Euclidean distance measures are often needed to achieve high accuracy. The first contribution of this thesis is the BoostMap algorithm for embedding arbitrary spaces into a vector space with a computationally efficient distance measure. Using this approach, an approximate set of nearest neighbors can be retrieved efficiently - often orders of magnitude faster than retrieval using the exact distance measure in the original space. The BoostMap algorithm has two key distinguishing features with respect to existing embedding methods. First, embedding construction explicitly maximizes the amount of nearest neighbor information preserved by the embedding. Second, embedding construction is treated as a machine learning problem, in contrast to existing methods that are based on geometric considerations. The second contribution is a method for constructing query-sensitive distance measures for the purposes of nearest neighbor retrieval and classification. In high-dimensional spaces, query-sensitive distance measures allow for automatic selection of the dimensions that are the most informative for each specific query object. It is shown theoretically and experimentally that query-sensitivity increases the modeling power of embeddings, allowing embeddings to capture a larger amount of the nearest neighbor structure of the original space. The third contribution is a method for speeding up nearest neighbor classification by combining multiple embedding-based nearest neighbor classifiers in a cascade. In a cascade, computationally efficient classifiers are used to quickly classify easy cases, and classifiers that are more computationally expensive and also more accurate are only applied to objects that are harder to classify. An interesting property of the proposed cascade method is that, under certain conditions, classification time actually decreases as the size of the database increases, a behavior that is in stark contrast to the behavior of typical nearest neighbor classification systems. The proposed methods are evaluated experimentally in several different applications: hand shape recognition, off-line character recognition, online character recognition, and efficient retrieval of time series. In all datasets, the proposed methods lead to significant improvements in accuracy and efficiency compared to existing state-of-the-art methods. In some datasets, the general-purpose methods introduced in this thesis even outperform domain-specific methods that have been custom-designed for such datasets

    Self-labeling techniques for semi-supervised time series classification: an empirical study

    Get PDF
    An increasing amount of unlabeled time series data available render the semi-supervised paradigm a suitable approach to tackle classification problems with a reduced quantity of labeled data. Self-labeled techniques stand out from semi-supervised classification methods due to their simplicity and the lack of strong assumptions about the distribution of the labeled and unlabeled data. This paper addresses the relevance of these techniques in the time series classification context by means of an empirical study that compares successful self-labeled methods in conjunction with various learning schemes and dissimilarity measures. Our experiments involve 35 time series datasets with different ratios of labeled data, aiming to measure the transductive and inductive classification capabilities of the self-labeled methods studied. The results show that the nearest-neighbor rule is a robust choice for the base classifier. In addition, the amending and multi-classifier self-labeled-based approaches reveal a promising attempt to perform semi-supervised classification in the time series context

    Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification

    Get PDF
    This paper presents a multiscale visibility graph representation for time series as well as feature extraction methods for time series classification (TSC). Unlike traditional TSC approaches that seek to find global similarities in time series databases (eg., Nearest Neighbor with Dynamic Time Warping distance) or methods specializing in locating local patterns/subsequences (eg., shapelets), we extract solely statistical features from graphs that are generated from time series. Specifically, we augment time series by means of their multiscale approximations, which are further transformed into a set of visibility graphs. After extracting probability distributions of small motifs, density, assortativity, etc., these features are used for building highly accurate classification models using generic classifiers (eg., Support Vector Machine and eXtreme Gradient Boosting). Thanks to the way how we transform time series into graphs and extract features from them, we are able to capture both global and local features from time series. Based on extensive experiments on a large number of open datasets and comparison with five state-of-the-art TSC algorithms, our approach is shown to be both accurate and efficient: it is more accurate than Learning Shapelets and at the same time faster than Fast Shapelets
    • …
    corecore