14,988 research outputs found

    Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps

    Full text link
    A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI 90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0175

    Approximation of fuzzy numbers by convolution method

    Full text link
    In this paper we consider how to use the convolution method to construct approximations, which consist of fuzzy numbers sequences with good properties, for a general fuzzy number. It shows that this convolution method can generate differentiable approximations in finite steps for fuzzy numbers which have finite non-differentiable points. In the previous work, this convolution method only can be used to construct differentiable approximations for continuous fuzzy numbers whose possible non-differentiable points are the two endpoints of 1-cut. The constructing of smoothers is a key step in the construction process of approximations. It further points out that, if appropriately choose the smoothers, then one can use the convolution method to provide approximations which are differentiable, Lipschitz and preserve the core at the same time.Comment: Submitted to Fuzzy Sets and System at Sep 18 201

    Iris Codes Classification Using Discriminant and Witness Directions

    Full text link
    The main topic discussed in this paper is how to use intelligence for biometric decision defuzzification. A neural training model is proposed and tested here as a possible solution for dealing with natural fuzzification that appears between the intra- and inter-class distribution of scores computed during iris recognition tests. It is shown here that the use of proposed neural network support leads to an improvement in the artificial perception of the separation between the intra- and inter-class score distributions by moving them away from each other.Comment: 6 pages, 5 figures, Proc. 5th IEEE Int. Symp. on Computational Intelligence and Intelligent Informatics (Floriana, Malta, September 15-17), ISBN: 978-1-4577-1861-8 (electronic), 978-1-4577-1860-1 (print

    Discrete approximations to vector spin models

    Get PDF
    We strengthen a result of two of us on the existence of effective interactions for discretised continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretising continuous-spin models, and show that, except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions.Comment: 12 page

    Discrete approximations to vector spin models

    Full text link
    We strengthen a result of two of us on the existence of effective interactions for discretised continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretising continuous-spin models, and show that, except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions.Comment: 12 page
    • …
    corecore