609 research outputs found

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Global Appearance Applied to Visual Map Building and Path Estimation Using Multiscale Analysis

    Get PDF
    In this work we present a topological map building and localization system for mobile robots based on global appearance of visual information. We include a comparison and analysis of global-appearance techniques applied to wide-angle scenes in retrieval tasks. Next, we define multiscale analysis, which permits improving the association between images and extracting topological distances. Then, a topological map-building algorithm is proposed. At first, the algorithm has information only of some isolated positions of the navigation area in the form of nodes. Each node is composed of a collection of images that covers the complete field of view from a certain position. The algorithm solves the node retrieval and estimates their spatial arrangement. With these aims, it uses the visual information captured along some routes that cover the navigation area. As a result, the algorithm builds a graph that reflects the distribution and adjacency relations between nodes (map). After the map building, we also propose a route path estimation system. This algorithm takes advantage of the multiscale analysis. The accuracy in the pose estimation is not reduced to the nodes locations but also to intermediate positions between them. The algorithms have been tested using two different databases captured in real indoor environments under dynamic conditions

    Graph-Based Classification of Omnidirectional Images

    Get PDF
    Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Creation and maintenance of visual incremental maps and hierarchical localization.

    Get PDF
    Over the last few years, the presence of the mobile robotics has considerably increased in a wide variety of environments. It is common to find robots that carry out repetitive and specific applications and also, they can be used for working at dangerous environments and to perform precise tasks. These robots can be found in a variety of social environments, such as industry, household, educational and health scenarios. For that reason, they need a specific and continuous research and improvement work. Specifically, autonomous mobile robots require a very precise technology to perform tasks without human assistance. To perform tasks autonomously, the robots must be able to navigate in an unknown environment. For that reason, the autonomous mobile robots must be able to address the mapping and localization tasks: they must create a model of the environment and estimate their position and orientation. This PhD thesis proposes and analyses different methods to carry out the map creation and the localization tasks in indoor environments. To address these tasks only visual information is used, specifically, omnidirectional images, with a 360º field of view. Throughout the chapters of this document solutions for autonomous navigation tasks are proposed, they are solved using transformations in the images captured by a vision system mounted on the robot. Firstly, the thesis focuses on the study of the global appearance descriptors in the localization task. The global appearance descriptors are algorithms that transform an image globally, into a unique vector. In these works, a deep comparative study is performed. In the experiments different global appearance descriptors are used along with omnidirectional images and the results are compared. The main goal is to obtain an optimized algorithm to estimate the robot position and orientation in real indoor environments. The experiments take place with real conditions, so some visual changes in the scenes can occur, such as camera defects, furniture or people movements and changes in the lighting conditions. The computational cost is also studied; the idea is that the robot has to localize the robot in an accurate mode, but also, it has to be fast enought. Additionally, a second application, whose goal is to carry out an incremental mapping in indoor environments, is presented. This application uses the best global appearance descriptors used in the localization task, but this time they are constructed with the purpose of solving the mapping problem using an incremental clustering technique. The application clusters a batch of images that are visually similar; every group of images or cluster is expected to identify a zone of the environment. The shape and size of the cluster can vary while the robot is visiting the different rooms. Nowadays. different algorithms can be used to obtain the clusters, but all these solutions usually work properly when they work ‘offline’, starting from the whole set of data to cluster. The main idea of this study is to obtain the map incrementally while the robot explores the new environment. Carrying out the mapping incrementally while the robot is still visiting the area is very interesting since having the map separated into nodes with relationships of similitude between them can be used subsequently for the hierarchical localization tasks, and also, to recognize environments already visited in the model. Finally, this PhD thesis includes an analysis of deep learning techniques for localization tasks. Particularly, siamese networks have been studied. Siamese networks are based on classic convolutional networks, but they permit evaluating two images simultaneously. These networks output a similarity value between the input images, and that information can be used for the localization tasks. Throughout this work the technique is presented, the possible architectures are analysed and the results after the experiments are shown and compared. Using the siamese networks, the localization in real operation conditions and environments is solved, focusing on improving the performance against illumination changes on the scene. During the experiments the room retrieval problem, the hierarchical localization and the absolute localization have been solved.Durante los últimos años, la presencia de la robótica móvil ha aumentado substancialmente en una gran variedad de entornos y escenarios. Es habitual encontrar el uso de robots para llevar a cabo aplicaciones repetitivas y específicas, así como tareas en entornos peligrosos o con resultados que deben ser muy precisos. Dichos robots se pueden encontrar tanto en ámbitos industriales como en familiares, educativos y de salud; por ello, requieren un trabajo específico y continuo de investigación y mejora. En concreto, los robots móviles autónomos requieren de una tecnología precisa para desarrollar tareas sin ayuda del ser humano. Para realizar tareas de manera autónoma, los robots deben ser capaces de navegar por un entorno ‘a priori’ desconocido. Por tanto, los robots móviles autónomos deben ser capaces de realizar la tarea de creación de mapas, creando un modelo del entorno y la tarea de localización, esto es estimar su posición y orientación. La presente tesis plantea un diseño y análisis de diferentes métodos para realizar las tareas de creación de mapas y localización en entornos de interior. Para estas tareas se emplea únicamente información visual, en concreto, imágenes omnidireccionales, con un campo de visión de 360º. En los capítulos de este trabajo se plantean soluciones a las tareas de navegación autónoma del robot mediante transformaciones en las imágenes que este es capaz de captar. En cuanto a los trabajos realizados, en primer lugar, se presenta un estudio de descriptores de apariencia global en tareas de localización. Los descriptores de apariencia global son transformaciones capaces de obtener un único vector que describa globalmente una imagen. En este trabajo se realiza un estudio exhaustivo de diferentes métodos de apariencia global adaptando su uso a imágenes omnidireccionales. Se trata de obtener un algoritmo optimizado para estimar la posición y orientación del robot en entornos reales de oficina, donde puede surgir cambios visuales en el entorno como movimientos de cámara, de mobiliario o de iluminación en la escena. También se evalúa el tiempo empleado para realizar esta estimación, ya que el trabajo de un robot debe ser preciso, pero también factible en cuanto a tiempos de computación. Además, se presenta una segunda aplicación donde el estudio se centra en la creación de mapas de entornos de interior de manera incremental. Esta aplicación hace uso de los descriptores de apariencia global estudiados para la tarea de localización, pero en este caso se utilizan para la construcción de mapas utilizando la técnica de ‘clustering’ incremental. En esta aplicación, conjuntos de imágenes visualmente similares se agrupan en un único grupo. La forma y cantidad de grupos es variable conforme el robot avanza en el entorno. Actualmente, existen diferentes algoritmos para obtener la separación de un entorno en nodos, pero las soluciones efectivas se realizan de manera ‘off-line’, es decir, a posteriori una vez se tienen todas las imágenes captadas. El trabajo presentado permite realizar esta tarea de manera incremental mientras el robot explora el nuevo entorno. Realizar esta tarea mientras se visita el resto del entorno puede ser muy interesante ya que tener el mapa separado por nodos con relaciones de proximidad entre ellos se puede ir utilizando para tareas de localización jerárquica. Además, es posible reconocer entornos ya visitados o similares a nodos pasados. Por último, la tesis también incluye el estudio de técnicas de aprendizaje profundo (‘deep learning’) para tareas de localización. En concreto, se estudia el uso de las redes siamesas, una técnica poco explorada en robótica móvil, que está basada en las clásicas redes convolucionales, pero en la que dos imágenes son evaluadas al mismo tiempo. Estas redes dan un valor de similitud entre el par de imágenes de entrada, lo que permite realizar tareas de localización visual. En este trabajo se expone esta técnica, se presentan las estructuras que pueden tener estas redes y los resultados tras la experimentación. Se evalúa la tarea de localización en entornos heterogéneos en los que el principal problema viene dado por cambios en la iluminación de la escena. Con las redes siamesas se trata de resolver el problema de estimación de estancia, el problema de localización jerárquica y el de localización absoluta

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Towards Robust Visual Localization in Challenging Conditions

    Get PDF
    Visual localization is a fundamental problem in computer vision, with a multitude of applications in robotics, augmented reality and structure-from-motion. The basic problem is to, based on one or more images, figure out the position and orientation of the camera which captured these images relative to some model of the environment. Current visual localization approaches typically work well when the images to be localized are captured under similar conditions compared to those captured during mapping. However, when the environment exhibits large changes in visual appearance, due to e.g. variations in weather, seasons, day-night or viewpoint, the traditional pipelines break down. The reason is that the local image features used are based on low-level pixel-intensity information, which is not invariant to these transformations: when the environment changes, this will cause a different set of keypoints to be detected, and their descriptors will be different, making the long-term visual localization problem a challenging one. In this thesis, five papers are included, which present work towards solving the problem of long-term visual localization. Two of the articles present ideas for how semantic information may be included to aid in the localization process: one approach relies only on the semantic information for visual localization, and the other shows how the semantics can be used to detect outlier feature correspondences. The third paper considers how the output from a monocular depth-estimation network can be utilized to extract features that are less sensitive to viewpoint changes. The fourth article is a benchmark paper, where we present three new benchmark datasets aimed at evaluating localization algorithms in the context of long-term visual localization. Lastly, the fifth article considers how to perform convolutions on spherical imagery, which in the future might be applied to learning local image features for the localization problem
    corecore