8,916 research outputs found

    GADGET: A code for collisionless and gasdynamical cosmological simulations

    Full text link
    We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged, both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5e7 particles, including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms employed, and show various tests of the code. We publically release both the serial and the massively parallel version of the code.Comment: 32 pages, 14 figures, replaced to match published version in New Astronomy. For download of the code, see http://www.mpa-garching.mpg.de/gadget (new version 1.1 available

    Hydra: A Parallel Adaptive Grid Code

    Full text link
    We describe the first parallel implementation of an adaptive particle-particle, particle-mesh code with smoothed particle hydrodynamics. Parallelisation of the serial code, ``Hydra'', is achieved by using CRAFT, a Cray proprietary language which allows rapid implementation of a serial code on a parallel machine by allowing global addressing of distributed memory. The collisionless variant of the code has already completed several 16.8 million particle cosmological simulations on a 128 processor Cray T3D whilst the full hydrodynamic code has completed several 4.2 million particle combined gas and dark matter runs. The efficiency of the code now allows parameter-space explorations to be performed routinely using 64364^3 particles of each species. A complete run including gas cooling, from high redshift to the present epoch requires approximately 10 hours on 64 processors. In this paper we present implementation details and results of the performance and scalability of the CRAFT version of Hydra under varying degrees of particle clustering.Comment: 23 pages, LaTex plus encapsulated figure

    The cosmological simulation code GADGET-2

    Full text link
    We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. We present the algorithms used by the code and discuss their accuracy and performance using a number of test problems. GADGET-2 is publicly released to the research community.Comment: submitted to MNRAS, 31 pages, 20 figures (reduced resolution), code available at http://www.mpa-garching.mpg.de/gadge

    Ptolemaic Indexing

    Full text link
    This paper discusses a new family of bounds for use in similarity search, related to those used in metric indexing, but based on Ptolemy's inequality, rather than the metric axioms. Ptolemy's inequality holds for the well-known Euclidean distance, but is also shown here to hold for quadratic form metrics in general, with Mahalanobis distance as an important special case. The inequality is examined empirically on both synthetic and real-world data sets and is also found to hold approximately, with a very low degree of error, for important distances such as the angular pseudometric and several Lp norms. Indexing experiments demonstrate a highly increased filtering power compared to existing, triangular methods. It is also shown that combining the Ptolemaic and triangular filtering can lead to better results than using either approach on its own

    The study of probability model for compound similarity searching

    Get PDF
    Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept space. All currently existing chemical compound database systems have adapt the vector space model to calculate the similarity of a database entry to a query compound. However, it assumes that fragments represented by the bits are independent of one another, which is not necessarily true. Hence, the possibility of applying another IR model is explored, which is the Probabilistic Model, for chemical compound searching. This model estimates the probabilities of a chemical structure to have the same bioactivity as a target compound. It is envisioned that by ranking chemical structures in decreasing order of their probability of relevance to the query structure, the effectiveness of a molecular similarity searching system can be increased. Both fragment dependencies and independencies assumption are taken into consideration in achieving improvement towards compound similarity searching system. After conducting a series of simulated similarity searching, it is concluded that PM approaches really did perform better than the existing similarity searching. It gave better result in all evaluation criteria to confirm this statement. In terms of which probability model performs better, the BD model shown improvement over the BIR model

    The Five Factor Model of personality and evaluation of drug consumption risk

    Full text link
    The problem of evaluating an individual's risk of drug consumption and misuse is highly important. An online survey methodology was employed to collect data including Big Five personality traits (NEO-FFI-R), impulsivity (BIS-11), sensation seeking (ImpSS), and demographic information. The data set contained information on the consumption of 18 central nervous system psychoactive drugs. Correlation analysis demonstrated the existence of groups of drugs with strongly correlated consumption patterns. Three correlation pleiades were identified, named by the central drug in the pleiade: ecstasy, heroin, and benzodiazepines pleiades. An exhaustive search was performed to select the most effective subset of input features and data mining methods to classify users and non-users for each drug and pleiad. A number of classification methods were employed (decision tree, random forest, kk-nearest neighbors, linear discriminant analysis, Gaussian mixture, probability density function estimation, logistic regression and na{\"i}ve Bayes) and the most effective classifier was selected for each drug. The quality of classification was surprisingly high with sensitivity and specificity (evaluated by leave-one-out cross-validation) being greater than 70\% for almost all classification tasks. The best results with sensitivity and specificity being greater than 75\% were achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance abuse (VSA).Comment: Significantly extended report with 67 pages, 27 tables, 21 figure
    • 

    corecore