31,722 research outputs found

    Structural characterization and statistical-mechanical model of epidermal patterns

    Full text link
    In proliferating epithelia of mammalian skin, cells of irregular polygonal-like shapes pack into complex nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct and Fourier spaces of the cell centroids in the early stages of embryonic development show structural directional dependence, while in the late stages the patterns tend towards statistically isotropic states. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-ranged soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. Our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. We discuss ways in which our model might be extended so as to better understand morphogenesis (in particular the emergence of planar cell polarity), wound-healing, and disease progression processes in skin, and how it could be applied to the design of synthetic tissues

    Statistical properties of determinantal point processes in high-dimensional Euclidean spaces

    Full text link
    The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of N×NN\times N matrices and then extrapolate to NN\to\infty. This formulation allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces of dimension dd. We also implement an algorithm due to Hough \emph{et. al.} \cite{hough2006dpa} for generating configurations of determinantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere point process for d=1d = 1 to 4. This homogeneous, isotropic determinantal point process, discussed also in a companion paper \cite{ToScZa08}, is the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix from the circular unitary ensemble (CUE). In addition to the nearest-neighbor probability distribution, we are able to calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process and discuss these as the dimension dd is varied. The results in this paper accompany and complement analytical properties of higher-dimensional determinantal point processes developed in \cite{ToScZa08}.Comment: 42 pages, 17 figure

    Asymmetric exclusion process with next-nearest-neighbor interaction: some comments on traffic flow and a nonequilibrium reentrance transition

    Full text link
    We study the steady-state behavior of a driven non-equilibrium lattice gas of hard-core particles with next-nearest-neighbor interaction. We calculate the exact stationary distribution of the periodic system and for a particular line in the phase diagram of the system with open boundaries where particles can enter and leave the system. For repulsive interactions the dynamics can be interpreted as a two-speed model for traffic flow. The exact stationary distribution of the periodic continuous-time system turns out to coincide with that of the asymmetric exclusion process (ASEP) with discrete-time parallel update. However, unlike in the (single-speed) ASEP, the exact flow diagram for the two-speed model resembles in some important features the flow diagram of real traffic. The stationary phase diagram of the open system obtained from Monte Carlo simulations can be understood in terms of a shock moving through the system and an overfeeding effect at the boundaries, thus confirming theoretical predictions of a recently developed general theory of boundary-induced phase transitions. In the case of attractive interaction we observe an unexpected reentrance transition due to boundary effects.Comment: 12 pages, Revtex, 7 figure

    Spatial distribution of nuclei in progressive nucleation: modeling and application

    Full text link
    Phase transformations ruled by non-simultaneous nucleation and growth do not lead to random distribution of nuclei. Since nucleation is only allowed in the untransformed portion of space, positions of nuclei are correlated. In this article an analytical approach is presented for computing pair-correlation function of nuclei in progressive nucleation. This quantity is further employed for characterizing the spatial distribution of nuclei through the nearest neighbor distribution function. The modeling is developed for nucleation in 2D space with power growth law and it is applied to describe electrochemical nucleation where correlation effects are significant. Comparison with both computer simulations and experimental data lends support to the model which gives insights into the transition from Poissonian to correlated nearest neighbor probability density.Comment: 30 pages; 9 figure

    Characterizing Spatial Patterns of Base Stations in Cellular Networks

    Full text link
    The topology of base stations (BSs) in cellular networks, serving as a basis of networking performance analysis, is considered to be obviously distinctive with the traditional hexagonal grid or square lattice model, thus stimulating a fundamental rethinking. Recently, stochastic geometry based models, especially the Poisson point process (PPP), attracts an ever-increasing popularity in modeling BS deployment of cellular networks due to its merits of tractability and capability for capturing nonuniformity. In this study, a detailed comparison between common stochastic models and real BS locations is performed. Results indicate that the PPP fails to precisely characterize either urban or rural BS deployment. Furthermore, the topology of real data in both regions are examined and distinguished by statistical methods according to the point interaction trends they exhibit. By comparing the corresponding real data with aggregative point process models as well as repulsive point process models, we verify that the capacity-centric deployment in urban areas can be modeled by typical aggregative processes such as the Matern cluster process, while the coverage-centric deployment in rural areas can be modeled by representativ

    Two-tier Spatial Modeling of Base Stations in Cellular Networks

    Full text link
    Poisson Point Process (PPP) has been widely adopted as an efficient model for the spatial distribution of base stations (BSs) in cellular networks. However, real BSs deployment are rarely completely random, due to environmental impact on actual site planning. Particularly, for multi-tier heterogeneous cellular networks, operators have to place different BSs according to local coverage and capacity requirement, and the diversity of BSs' functions may result in different spatial patterns on each networking tier. In this paper, we consider a two-tier scenario that consists of macrocell and microcell BSs in cellular networks. By analyzing these two tiers separately and applying both classical statistics and network performance as evaluation metrics, we obtain accurate spatial model of BSs deployment for each tier. Basically, we verify the inaccuracy of using PPP in BS locations modeling for either macrocells or microcells. Specifically, we find that the first tier with macrocell BSs is dispersed and can be precisely modelled by Strauss point process, while Matern cluster process captures the second tier's aggregation nature very well. These statistical models coincide with the inherent properties of macrocell and microcell BSs respectively, thus providing a new perspective in understanding the relationship between spatial structure and operational functions of BSs
    corecore