785 research outputs found

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Novel reduced-state BCJR algorithms

    Get PDF

    Iterative joint channel and data estimation for rank-deficient MIMO-OFDM

    No full text
    In this paper we propose a turbo-detected multi-antenna-multi-carrier receiver scheme. Following the philosophy of the turbo processing, our turbo MIMO-OFDM receiver comprises a succession of detection modules, namely the channel estimator, the space-time detector and the decoder, which iteratively exchange soft bit-related information and thus facilitate a substantial improvement of the overall system performance. In this paper we analyze the achievable performance of the iterative system proposed with the aim of documenting the various design trade-offs, such as the achievable error-rate performance, the attainable data-rate as well as the associated computational complexity. Specifically, we report a virtually error-free performance for a rate-1/2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effective throughput of 8*2/2=8 bits/sec/Hz and having a pilot overhead of only 10%, at SNR of 7.5dB and normalized Doppler frequency of 0.003, which corresponds to a mobile terminal speed of about 65 km/h

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    From nominal to true a posteriori probabilities: an exact Bayesian theorem based probabilistic data association approach for iterative MIMO detection and decoding

    No full text
    It was conventionally regarded that the existing probabilistic data association (PDA) algorithms output the estimated symbol-wise a posteriori probabilities (APPs) as soft information. In this paper, however, we demonstrate that these probabilities are not the true APPs in the rigorous mathematicasense, but a type of nominal APPs, which are unsuitable for the classic architecture of iterative detection and decoding (IDD) aided receivers. To circumvent this predicament, we propose an exact Bayesian theorem based logarithmic domain PDA (EB-Log-PDA) method, whose output has similar characteristics to the true APPs, and hence it is readily applicable to the classic IDD architecture of multiple-input multiple-output (MIMO) systems using the general M-ary modulation. Furthermore, we investigate the impact of the PDA algorithms' inner iteration on the design of PDA-aided IDD receivers. We demonstrate that introducing inner iterations into PDAs, which is common practice in PDA-aided uncoded MIMO systems, would actually degrade the IDD receiver's performance, despite significantly increasing the overall computational complexity of the IDD receiver. Finally, we investigate the relationship between the extrinsic log-likelihood ratio (LLRs) of the proposed EB-Log-PDA and of the approximate Bayesian theorem based logarithmic domain PDA (AB-Log-PDA) reported in our previous work. We also show that the IDD scheme employing the EB-Log-PDA without incorporating any inner PDA iterations has an achievable performance close to that of the optimal maximum a posteriori (MAP) detector based IDD receiver, while imposing a significantly lower computational complexity in the scenarios considered

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    corecore