212 research outputs found

    A Utility-Theoretic Approach to Privacy in Online Services

    Get PDF
    Online offerings such as web search, news portals, and e-commerce applications face the challenge of providing high-quality service to a large, heterogeneous user base. Recent efforts have highlighted the potential to improve performance by introducing methods to personalize services based on special knowledge about users and their context. For example, a user's demographics, location, and past search and browsing may be useful in enhancing the results offered in response to web search queries. However, reasonable concerns about privacy by both users, providers, and government agencies acting on behalf of citizens, may limit access by services to such information. We introduce and explore an economics of privacy in personalization, where people can opt to share personal information, in a standing or on-demand manner, in return for expected enhancements in the quality of an online service. We focus on the example of web search and formulate realistic objective functions for search efficacy and privacy. We demonstrate how we can find a provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner. We evaluate our methodology on data drawn from a log of the search activity of volunteer participants. We separately assess usersā€™ preferences about privacy and utility via a large-scale survey, aimed at eliciting preferences about peoplesā€™ willingness to trade the sharing of personal data in returns for gains in search efficiency. We show that a significant level of personalization can be achieved using a relatively small amount of information about users

    Submodularity in Action: From Machine Learning to Signal Processing Applications

    Full text link
    Submodularity is a discrete domain functional property that can be interpreted as mimicking the role of the well-known convexity/concavity properties in the continuous domain. Submodular functions exhibit strong structure that lead to efficient optimization algorithms with provable near-optimality guarantees. These characteristics, namely, efficiency and provable performance bounds, are of particular interest for signal processing (SP) and machine learning (ML) practitioners as a variety of discrete optimization problems are encountered in a wide range of applications. Conventionally, two general approaches exist to solve discrete problems: (i)(i) relaxation into the continuous domain to obtain an approximate solution, or (ii)(ii) development of a tailored algorithm that applies directly in the discrete domain. In both approaches, worst-case performance guarantees are often hard to establish. Furthermore, they are often complex, thus not practical for large-scale problems. In this paper, we show how certain scenarios lend themselves to exploiting submodularity so as to construct scalable solutions with provable worst-case performance guarantees. We introduce a variety of submodular-friendly applications, and elucidate the relation of submodularity to convexity and concavity which enables efficient optimization. With a mixture of theory and practice, we present different flavors of submodularity accompanying illustrative real-world case studies from modern SP and ML. In all cases, optimization algorithms are presented, along with hints on how optimality guarantees can be established

    Active planning for underwater inspection and the benefit of adaptivity

    Get PDF
    We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). Unlike a large body of prior work, we focus on planning the views of the AUV to improve the quality of the inspection, rather than maximizing the accuracy of a given data stream. We formulate the inspection planning problem as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We rigorously analyze the benefit of adaptive re-planning for such problems, and we prove that the potential benefit of adaptivity can be reduced from an exponential to a constant factor by changing the problem from cost minimization with a constraint on information gain to variance reduction with a constraint on cost. Such analysis allows the use of robust, non-adaptive planning algorithms that perform competitively with adaptive algorithms. Based on our analysis, we propose a method for constructing 3D meshes from sonar-derived point clouds, and we introduce uncertainty modeling through non-parametric Bayesian regression. Finally, we demonstrate the benefit of active inspection planning using sonar data from ship hull inspections with the Bluefin-MIT Hovering AUV.United States. Office of Naval Research (ONR Grant N00014-09-1-0700)United States. Office of Naval Research (ONR Grant N00014-07-1-00738)National Science Foundation (U.S.) (NSF grant 0831728)National Science Foundation (U.S.) (NSF grant CCR-0120778)National Science Foundation (U.S.) (NSF grant CNS-1035866

    Bayesian batch active learning as sparse subset approximation

    Get PDF
    Leveraging the wealth of unlabeled data produced in recent years provides great potential for improving supervised models. When the cost of acquiring labels is high, probabilistic active learning methods can be used to greedily select the most informative data points to be labeled. However, for many large-scale problems standard greedy procedures become computationally infeasible and suffer from negligible model change. In this paper, we introduce a novel Bayesian batch active learning approach that mitigates these issues. Our approach is motivated by approximating the complete data posterior of the model parameters. While naive batch construction methods result in correlated queries, our algorithm produces diverse batches that enable efficient active learning at scale. We derive interpretable closed-form solutions akin to existing active learning procedures for linear models, and generalize to arbitrary models using random projections. We demonstrate the benefits of our approach on several large-scale regression and classification tasks.Comment: NeurIPS 201
    • ā€¦
    corecore