29,860 research outputs found

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    Stochastic Model Predictive Control with Discounted Probabilistic Constraints

    Full text link
    This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law to minimise a quadratic cost function subject to a chance constraint. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and ignoring violation probabilities in the far future, this form of constraint enables the feasibility of the online optimisation to be guaranteed without an assumption of boundedness of the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility based on knowledge of a suboptimal solution. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition.Comment: 6 pages, Conference Proceeding

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Necessary Condition for Near Optimal Control of Linear Forward-backward Stochastic Differential Equations

    Full text link
    This paper investigates the near optimal control for a kind of linear stochastic control systems governed by the forward backward stochastic differential equations, where both the drift and diffusion terms are allowed to depend on controls and the control domain is not assumed to be convex. In the previous work (Theorem 3.1) of the second and third authors [\textit{% Automatica} \textbf{46} (2010) 397-404], some problem of near optimal control with the control dependent diffusion is addressed and our current paper can be viewed as some direct response to it. The necessary condition of the near-optimality is established within the framework of optimality variational principle developed by Yong [\textit{SIAM J. Control Optim.} \textbf{48} (2010) 4119--4156] and obtained by the convergence technique to treat the optimal control of FBSDEs in unbounded control domains by Wu [% \textit{Automatica} \textbf{49} (2013) 1473--1480]. Some new estimates are given here to handle the near optimality. In addition, an illustrating example is discussed as well.Comment: To appear in International Journal of Contro
    corecore