1,296 research outputs found

    Coordinated Multi-Agent Patrolling with History-Dependent Cost Rates -- Asymptotically Optimal Policies for Large-Scale Systems

    Full text link
    We study a large-scale patrol problem with history-dependent costs and multi-agent coordination, where we relax the assumptions on the past patrol studies, such as identical agents, submodular reward functions and capabilities of exploring any location at any time. Given the complexity and uncertainty of the practical situations for patrolling, we model the problem as a discrete-time Markov decision process (MDP) that consists of a large number of parallel restless bandit processes and aim to minimize the cumulative patrolling cost over a finite time horizon. The problem exhibits an excessively large size of state space, which increases exponentially in the number of agents and the size of geographical region for patrolling. We extend the Whittle relaxation and Lagrangian dynamic programming (DP) techniques to the patrolling case, where the additional, non-trivial constraints used to track the trajectories of all the agents are inevitable and significantly complicate the analysis. The past results cannot ensure the existence of patrol policies with theoretically bounded performance degradation. We propose a patrol policy applicable and scalable to the above mentioned large, complex problem. By invoking Freidlin's theorem, we prove that the performance deviation between the proposed policy and optimality diminishes exponentially in the problem size.Comment: 37 pages, 4 figure

    Monitoring using Heterogeneous Autonomous Agents.

    Full text link
    This dissertation studies problems involving different types of autonomous agents observing objects of interests in an area. Three types of agents are considered: mobile agents, stationary agents, and marsupial agents, i.e., agents capable of deploying other agents or being deployed themselves. Objects can be mobile or stationary. The problem of a mobile agent without fuel constraints revisiting stationary objects is formulated. Visits to objects are dictated by revisit deadlines, i.e., the maximum time that can elapse between two visits to the same object. The problem is shown to be NP-complete and heuristics are provided to generate paths for the agent. Almost periodic paths are proven to exist. The efficacy of the heuristics is shown through simulation. A variant of the problem where the agent has a finite fuel capacity and purchases fuel is treated. Almost periodic solutions to this problem are also shown to exist and an algorithm to compute the minimal cost path is provided. A problem where mobile and stationary agents cooperate to track a mobile object is formulated, shown to be NP-hard, and a heuristic is given to compute paths for the mobile agents. Optimal configurations for the stationary agents are then studied. Several methods are provided to optimally place the stationary agents; these methods are the maximization of Fisher information, the minimization of the probability of misclassification, and the minimization of the penalty incurred by the placement. A method to compute optimal revisit deadlines for the stationary agents is given. The placement methods are compared and their effectiveness shown using numerical results. The problem of two marsupial agents, one carrier and one passenger, performing a general monitoring task using a constrained optimization formulation is stated. Necessary conditions for optimal paths are provided for cases accounting for constrained release of the passenger, termination conditions for the task, as well as retrieval and constrained retrieval of the passenger. A problem involving two marsupial agents collecting information about a stationary object while avoiding detection is then formulated. Necessary conditions for optimal paths are provided and rectilinear motion is demonstrated to be optimal for both agents.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111439/1/jfargeas_1.pd

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Effective Cooperation and Scalability in Multi-Robot Teams for Automatic Patrolling of Infrastructures

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraIn the digital era that we live in, advances in technology have proliferated throughout our society, quickening the completion of tasks that were painful in the old days, improving solutions to the everyday problems that we face, and generally assisting human beings both in their professional and personal life. Robotics is a clear example of a broad technological field that evolves every day. In fact, scientists predict that in the upcoming few decades, robots will naturally interact and coexist alongside human beings. While it is true that robots already have a strong presence in industrial environments, e.g., robotic arms for manufacturing, the average person still looks upon robots with suspicion, since they are not acquainted by such type of technology. In this thesis, the author deploys teams of mobile robots in indoor scenarios to cooperatively perform patrolling missions, which represents an effort to bring robots closer to humans and assist them in monotonous or repetitive tasks, such as supervising and monitoring indoor infrastructures or simply cooperatively cleaning floors. In this context, the team of robots should be able to sense the environment, localize and navigate autonomously between way points while avoiding obstacles, incorporate any number of robots, communicate actions in a distributed way and being robust not only to agent failures but also communication failures, so as to effectively coordinate to achieve optimal collective performance. The referred capabilities are an evidence that such systems can only prove their reliability in real-world environments if robots are endowed with intelligence and autonomy. Thus, the author follows a line of research where patrolling units have the necessary tools for intelligent decision-making, according to the information of the mission, the environment and teammates' actions, using distributed coordination architectures. An incremental approach is followed. Firstly, the problem is presented and the literature is deeply studied in order to identify potential weaknesses and research opportunities, backing up the objectives and contributions proposed in this thesis. Then, problem fundamentals are described and benchmarking of multi-robot patrolling algorithms in realistic conditions is conducted. In these earlier stages, the role of different parameters of the problem, like environment connectivity, team size and strategy philosophy, will become evident through extensive empirical results and statistical analysis. In addition, scalability is deeply analyzed and tied with inter-robot interference and coordination, imposed by each patrolling strategy. After gaining sensibility to the problem, preliminary models for multi-robot patrol with special focus on real-world application are presented, using a Bayesian inspired formalism. Based on these, distributed strategies that lead to superior team performance are described. Interference between autonomous agents is explicitly dealt with, and the approaches are shown to scale to large teams of robots. Additionally, the robustness to agent and communication failures is demonstrated, as well as the flexibility of the model proposed. In fact, by later generalizing the model with learning agents and maintaining memory of past events, it is then shown that these capabilities can be inherited, while at the same time increasing team performance even further and fostering adaptability. This is verified in simulation experiments and real-world results in a large indoor scenario. Furthermore, since the issue of team scalability is highly in focus in this thesis, a method for estimating the optimal team size in a patrolling mission, according to the environment topology is proposed. Upper bounds for team performance prior to the mission start are provided, supporting the choice of the number of robots to be used so that temporal constraints can be satisfied. All methods developed in this thesis are tested and corroborated by experimental results, showing the usefulness of employing cooperative teams of robots in real-world environments and the potential for similar systems to emerge in our society.FCT - SFRH/BD/64426/200

    Developing an online cooperative police patrol routing strategy

    Get PDF
    A cooperative routing strategy for daily operations is necessary to maintain the effects of hotspot policing and to reduce crime and disorder. Existing robot patrol routing strategies are not suitable, as they omit the peculiarities and challenges of daily police patrol including minimising the average time lag between two consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability to patrol routes. In this research, we propose a set of guidelines for patrol routing strategies to meet the challenges of police patrol. Following these guidelines, we develop an innovative heuristic-based and Bayesian-inspired real-time strategy for cooperative routing police patrols. Using two real-world cases and a benchmark patrol strategy, an online agent-based simulation has been implemented to testify the efficiency, flexibility, scalability, unpredictability, and robustness of the proposed strategy and the usability of the proposed guidelines

    The robot routing problem for collecting aggregate stochastic rewards

    Get PDF
    We propose a new model for formalizing reward collection problems on graphs with dynamically generated rewards which may appear and disappear based on a stochastic model. The robot routing problem is modeled as a graph whose nodes are stochastic processes generating potential rewards over discrete time. The rewards are generated according to the stochastic process, but at each step, an existing reward disappears with a given probability. The edges in the graph encode the (unit-distance) paths between the rewards' locations. On visiting a node, the robot collects the accumulated reward at the node at that time, but traveling between the nodes takes time. The optimization question asks to compute an optimal (or epsilon-optimal) path that maximizes the expected collected rewards. We consider the finite and infinite-horizon robot routing problems. For finite-horizon, the goal is to maximize the total expected reward, while for infinite horizon we consider limit-average objectives. We study the computational and strategy complexity of these problems, establish NP-lower bounds and show that optimal strategies require memory in general. We also provide an algorithm for computing epsilon-optimal infinite paths for arbitrary epsilon > 0

    訪問頻度を考慮したマルチエージェント巡回問題における公平なタスク分割法の提案

    Get PDF
    早大学位記番号:新7959早稲田大

    Multi-agent persistent surveillance under temporal logic constraints

    Full text link
    This thesis proposes algorithms for the deployment of multiple autonomous agents for persistent surveillance missions requiring repeated, periodic visits to regions of interest. Such problems arise in a variety of domains, such as monitoring ocean conditions like temperature and algae content, performing crowd security during public events, tracking wildlife in remote or dangerous areas, or watching traffic patterns and road conditions. Using robots for surveillance is an attractive solution to scenarios in which fixed sensors are not sufficient to maintain situational awareness. Multi-agent solutions are particularly promising, because they allow for improved spatial and temporal resolution of sensor information. In this work, we consider persistent monitoring by teams of agents that are tasked with satisfying missions specified using temporal logic formulas. Such formulas allow rich, complex tasks to be specified, such as "visit regions A and B infinitely often, and if region C is visited then go to region D, and always avoid obstacles." The agents must determine how to satisfy such missions according to fuel, communication, and other constraints. Such problems are inherently difficult due to the typically infinite horizon, state space explosion from planning for multiple agents, communication constraints, and other issues. Therefore, computing an optimal solution to these problems is often infeasible. Instead, a balance must be struck between computational complexity and optimality. This thesis describes solution methods for two main classes of multi-agent persistent surveillance problems. First, it considers the class of problems in which persistent surveillance goals are captured entirely by TL constraints. Such problems require agents to repeatedly visit a set of surveillance regions in order to satisfy their mission. We present results for agents solving such missions with charging constraints, with noisy observations, and in the presence of adversaries. The second class of problems include an additional optimality criterion, such as minimizing uncertainty about the location of a target or maximizing sensor information among the team of agents. We present solution methods and results for such missions with a variety of optimality criteria based on information metrics. For both classes of problems, the proposed algorithms are implemented and evaluated via simulation, experiments with robots in a motion capture environment, or both
    corecore