827 research outputs found

    Efficient Minimization of Decomposable Submodular Functions

    Get PDF
    Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel subclass of submodular minimization problems that we call decomposable. Decomposable submodular functions are those that can be represented as sums of concave functions applied to modular functions. We develop an algorithm, SLG, that can efficiently minimize decomposable submodular functions with tens of thousands of variables. Our algorithm exploits recent results in smoothed convex minimization. We apply SLG to synthetic benchmarks and a joint classification-and-segmentation task, and show that it outperforms the state-of-the-art general purpose submodular minimization algorithms by several orders of magnitude.Comment: Expanded version of paper for Neural Information Processing Systems 201

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints

    Full text link
    We investigate two new optimization problems -- minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [14, 35] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to log-factors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.Comment: 23 pages. A short version of this appeared in Advances of NIPS-201

    Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

    Full text link
    We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [53]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the 'curvature' of the submodular function, and provide lower and upper bounds that refine and improve previous results [3, 16, 18, 52]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [7, 55], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.Comment: 21 pages. A shorter version appeared in Advances of NIPS-201

    Near-Optimal Sensor Scheduling for Batch State Estimation: Complexity, Algorithms, and Limits

    Full text link
    In this paper, we focus on batch state estimation for linear systems. This problem is important in applications such as environmental field estimation, robotic navigation, and target tracking. Its difficulty lies on that limited operational resources among the sensors, e.g., shared communication bandwidth or battery power, constrain the number of sensors that can be active at each measurement step. As a result, sensor scheduling algorithms must be employed. Notwithstanding, current sensor scheduling algorithms for batch state estimation scale poorly with the system size and the time horizon. In addition, current sensor scheduling algorithms for Kalman filtering, although they scale better, provide no performance guarantees or approximation bounds for the minimization of the batch state estimation error. In this paper, one of our main contributions is to provide an algorithm that enjoys both the estimation accuracy of the batch state scheduling algorithms and the low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the optimal solution, and this factor is close to the best approximation factor 1/e one can achieve in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that is not only lower than that of the current algorithms for batch state estimation; it is also lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve these results by proving two properties for our batch state estimation error metric, which quantifies the square error of the minimum variance linear estimator of the batch state vector: a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.Comment: Correction of typos in proof
    • …
    corecore