10 research outputs found

    Near-membrane ensemble elongation in the proline-rich LRP6 intracellular domain may explain the mysterious initiation of the Wnt signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LRP6 is a membrane protein crucial in the initiation of canonical Wnt/β-catenin signalling. Its function is dependent on its proline-serine rich intracellular domain. LRP6 has five PPP(S/T)P motifs that are phosphorylated during activation, starting with the site closest to the membrane. Like all long proline rich regions, there is no stable 3D structure for this isolated, contiguous region.</p> <p>Results</p> <p>In our study, we use a computational simulation tool to sample the conformational space of the LRP6 intracellular domain, under the spatial constraints imposed by (a) the membrane and (b) the close approach of the neighboring intracellular molecular complex, which is assembled on Frizzled when Wnt binds to both LRP6 and Frizzled on the opposite side of the membrane. We observe that an elongated form dominates in the LRP6 intracellular domain structure ensemble. This elongation could relieve conformational auto-inhibition of the PPP(S/T)PX(S/T) motif binding sites and allow GSK3 and CK1 to approach their phosphorylation sites, thereby activating LRP6 and the downstream pathway.</p> <p>Conclusions</p> <p>We propose a model in which the conformation of the LRP6 intracellular domain is elongated before activation. This is based on the intrusion of the Frizzled complex into the ensemble space of the proline rich region of LRP6, which alters the shape of its available ensemble space. To test whether this observed ensemble conformational change is sequence dependent, we did a control simulation with a hypothetical sequence with 50% proline and 50% serine in alternating residues. We confirm that this ensemble neighbourhood-based conformational change is independent of sequence and conclude that it is likely found in all proline rich sequences. These observations help us understand the nature of proline rich regions which are both unstructured and which seem to evolve at a higher rate of mutation, while maintaining sequence composition.</p

    Balancing WNT signaling in early forebrain development

    Get PDF
    During early forebrain development, the establishment of the regional identity of neural progenitor cells (NPCs) relies on the integration of signals from multiple signaling centers, including the WNT signaling pathway. WNT pathway is essential for embryonic development and is regulated by LDL receptor related proteins (LRPs), which act as co-receptors of frizzled. While the LRP family member - LRP5 and LRP6 are well known as co-receptors of frizzled, acting as the main receptor of WNT3a. Recent evidence suggests that LRP4 also plays a role in the central nervous system. My aim is to shed light on the common and distinct functions of LRP4 and LRP6 and the interactions between LRP4/6 linked to the WNT pathway during early forebrain development. To achieve this, a genetic approach was used to analyze the forebrain development of LRP4-, LRP6-deficient mouse embryos, as well as Lrp4-/-; Lrp6-/- double mutant mouse embryos at E9.5. High-resolution immunofluorescence imaging, cell culture models and molecular biology approaches were employed to investigate the effects of genetic inactivation of LRP4 and LRP6 on canonical WNT activity, mitotic activity of forebrain neuronal precursors, and the development of NTDs. The results of this study indicate that loss of LRP6 can lead to a developmental disorder in E9.5 embryos, such as caudal truncation, neural tube defects (NTDs) and forebrain hypoplasia. Importantly, loss of LRP4 can partially rescue these deficits in Lrp6 null mutants. Specially, caudal truncation and impaired mitotic activity of forebrain neuronal precursors observed in Lrp6-/- mutants were rescued in Lrp4-/-; Lrp6-/- double mutants. However, cranial NTDs in LRP6-deficient mice were not ameliorated by genetic ablation of Lrp4. Additionally, it was demonstrated that genetic inactivation of LRP4 rescued impaired canonical WNT activity and the downstream targets in Lrp6-/- mutants. Moreover, the data suggest that LRP4 and LRP6 also influence the proliferation of human retinal pigment epithelial (hTERT RPE-1) cells in cell culture, adding to their roles in embryonic development. Furthermore, the study revealed that LRP4 modulates LRP6-dependent WNT signaling in a more general context, as demonstrated in hTERT RPE-1 cells. Overall, these results highlight the important and complex role of LRP4 and LRP6 in forebrain development and WNT signaling regulation. The findings suggest that LRP4 2 acts as a negative regulator of LRP6-mediated canonical WNT signaling and plays a critical role in the regulation of mitotic activity of neuronal precursors in the early developing forebrain. Additionally, the results suggest that LRP5 or an as-yet undetermined receptor can compensate for the loss of LRP6 as an FZD co-receptor in the absence of LRP4. These findings provide new insights into the molecular mechanisms that regulate forebrain development and may have implications for the understanding and treatment of developmental disorders

    CONFORMATIONAL TRANSITION OF FORMIN DISORDERED REGION UPON PROFILIN BINDING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigating the Non-globular Proteins of the Canonical Wnt Signalling Pathway

    Get PDF
    The canonical Wnt pathway is a vitally important signalling pathway that plays an important role in cell proliferation, differentiation and fate decisions in embryonic development and in the maintenance of adult tissues. The twelve Armadillo (ARM) repeat-containing protein beta-catenin acts as the signal transducer in this pathway and is continuously degraded in the cytosol by the beta-catenin destruction complex (BDC). Upon receiving the Wnt signal the BDC is inactivated, allowing beta-catenin to accumulate in the cytosol and be transported to the nucleus where it binds to the TCF/LEF family of transcription factors, inducing the expression of cell cycle promotor genes. In this Thesis I describe investigations into the roles of leucine-rich repeat kinase 2 (LRRK2) and the transcription factor TCF7L2 within this signalling pathway. LRRK2 is a large multi-domain protein with strong links to Parkinson’s disease and suggested to play a role in inactivating the BDC in response to the Wnt signal. A recent paper proposed that the previously uncharacterised regions of LRRK2 contain a series of tandem repeat sub-domains. I began an investigation into these sub-domains but I was unable to produce soluble protein constructs despite the use of a range of common techniques, and so I was forced to conclude this project early. The main body of this thesis focuses on the interaction between the intrinsically disordered TCF7L2 and the repeat protein beta-catenin, a very long interface of approximately 4800 Å2 that spans from the third to the eleventh ARM repeat of beta-catenin and residues 12 to 50 of TCF7L2, as determined by X-ray crystal structures. First, a fluorescence reporter system for the binding interaction was developed and used to determine the kinetic rate constants for the association and dissociation of the wild-type construct using stopped-flow fluorescence spectroscopy and time-dependent fluorescence spectroscopy. It was found that association of TCF7L2 and beta-catenin was rapid (7.3 ± 0.1 x107 M-1s-1) with only a single phase was observed, whereas dissociation was biphasic and slow (5.7 ± 0.4 x10-4 s-1, 15.2 ± 2.8 x10-4 s-1). Using either of these two dissociation rate constants the calculated Kd value obtained is much lower than the values previously reported in the literature (8 ± 1 / 20 ± 2 pM compared with 16 nM). This reporter system was then used to investigate the striking variability between three crystal structures previously obtained for the TCF7L2-beta-catenin complex, in which different regions of TCF7L2 show different elements of secondary structure. Mutational analysis revealed that the interface residues on TCF7L2 identified in these structures make little or no contribution to the overall binding affinity, pointing to a transient nature of these contact in solution and suggesting that the observed differences between the structures are due to differences in crystal packing. Further experiments into the effect of osmolarity on the binding equilibrium and kinetics supported this conclusion and suggest a change in the association/dissociation mechanism as a function of ionic strength. Lastly, further mutational analysis of TCF7L2 revealed two regions that contribute particularly strongly to the binding kinetics, suggesting that TCF7L2-beta-catenin assembly proceeds via a two-site avidity mechanism. Some of the most destabilising variants display two additional dissociation phases, indicating the presence of an alternative dissociation pathway that is inaccessible to the wild-type. In summary, the results presented here provide insights into the kinetics of molecular recognition of a long intrinsically disordered region with an extended repeat protein surface, a process shown to involve multiple routes with multiple steps in each

    Current Frontiers and Perspectives in Cell Biology

    Get PDF
    A numerous internationally renowned authors in the pages of this book present the views of the fields of cell biology and their own research results or review of current knowledge. Chapters are divided into five sections that are dedicated to cell structures and functions, genetic material, regulatory mechanisms, cellular biomedicine and new methods in cell biology. Multidisciplinary and often quite versatile approach by many authors have imposed restrictions of this classification, so it is certain that many chapters could belong to the other sections of this book. The current frontiers, on the manner in which they described in the book, can be a good inspiration to many readers for further improving, and perspectives which are highlighted can be seen in many areas of fundamental biology, biomedicine, biotechnology and other applications of knowledge of cell biology. The book will be very useful for beginners to gain insight into new area, as well as experts to find new facts and expanding horizons

    Cell-free expression and molecular modeling of the γ-secretase complex and G-protein-coupled receptors

    Get PDF
    Alzheimer’s disease (AD), which was first reported more than a century ago by Alhzeimer, is one of the commonest forms of dementia which affects >30 million people globally (>8 million in Europe). The origin and pathogenesis of AD is poorly understood and there is no cure available for the disease. AD is characterized by the accumulation of senile plaques composed of amyloid beta peptides (Ab 37-43) which is formed by the gamma secretase (GS) complex by cleaving amyloid precursor protein. Therefore GS can be an attractive drug target. Since GS processes several other substrates like Notch, CD44 and Cadherins, nonspecific inhibition of GS has many side effects. Due to the lack of crystal structure of GS, which is attributed to the extreme difficulties in purifying it, molecular modeling can be useful to understand its architecture. So far only low resolution cryoEM structures of the complex has been solved which only provides a rough structure of the complex at low 12-15 A resolution Furthermore the activity of GS in vitro can be achieved by means of cell-free (CF) expression. GS comprises catalytic subunits namely presenilins and supporting elements containing Pen-2, Aph-1 and Nicastrin. The origin of AD is hidden in the regulated intramembrnae proteolysis (RIP) which is involved in various physiological processes and also in leukemia. So far growth factors, cytokines, receptors, viral proteins, cell adhesion proteins, signal peptides and GS has been shown to undergo RIP. During RIP, the target proteins undergo extracellular shredding and intramembrane proteolysis. This thesis is based on molecular modeling, molecular dynamics (MD) simulations, cell-free (CF) expression, mass spectrometry, NMR, crystallization, activity assay etc of the components of GS complex and G-protein coupled receptors (GPCRs). First I validated the NMR structure of PS1 CTF in detergent micelles and lipid bilayers using coarse-grained MD simulations using MARTINI forcefield implemented in Gromacs. CTF was simulated in DPC micelles, DPPC and DLPC lipid bilayer. Starting from random configuration of detergent and lipids, micelle and lipid bilyer were formed respectively in presence of CTF and it was oriented properly to the micelle and bilyer during the simulation. Around DPC molecules formed micelle around CTF in agreement of the experimental results in which 80-85 DPC molecules are required to form micelles. The structure obtained in DPC was similar to that of NMR structure but differed in bilayer simulations showed the possibility of substrate docking in the conserved PAL motif. Simulations of CTF in implicit membrane (IMM1) in CHAMM yielded similar structure to that from coarse grained MD. I performed cell-free expression optimization, crystallization and NMR spectroscopy of Pen-2 in various detergent micelles. Additionally Pen-2 was modeled by a combination of rosetta membrane ab-initio method, HHPred distant homology modeling and incorporating NMR constraints. The models were validated by all atom and coarse grained MD simulations both in detergent micelles and POPC/DPPC lipid bilayers using MARTINI forcefield. GS operon consisting of all four subunits was co-expressed in CF and purified. The presence of of GS subunits after pull-down with Aph-1 was determined by western blotting (Pen-2) and mass spectrometry (Presenilin-1 and Aph-1). I also studied interactions of especially PS1 CTF, APP and NTF by docking and MD. I also made models and interfaces of Pen-2 with PS1 NTF and checked their stability by MD simulations and compared with experimental results. The goal is to model the interfaces between GS subunits using molecular modeling approaches based on available experimental data like cross-linking, mutations and NMR structure of C-terminal fragment of PS1 and transmembrane part of APP. The obtained interfaces of GS subunits may explain its catalysis mechanism which can be exploited for novel lead design. Due to lack of crystal/NMR structure of the GS subunits except the PS1 CTF, it is not possible to predict the effect of mutations in terms of APP cleavage. So I also developed a sequence based approach based on machine learning using support vector machine to predict the effect of PS1 CTF L383 mutations in terms of Aβ40/Aβ42 ratio with 88% accuracy. Mutational data derived from the Molgen database of Presenilin 1 mutations was using for training. GPCRs (also called 7TM receptors) form a large superfamily of membrane proteins, which can be activated by small molecules, lipids, hormones, peptides, light, pain, taste and smell etc. Although 50% of the drugs in market target GPCRs , only few are targeted therapeutically. Such wide range of targets is due to involvement of GPCRs in signaling pathways related to many diseases i.e. dementia (like Alzheimer's disease), metabolic (like diabetes) including endocrinological disorders, immunological including viral infections, cardiovascular, inflammatory, senses disorders, pain and cancer. Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) GPCRs. Docking of agonists and antagonists to CB1 and CB2 cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch, and its possible role in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB1 and CB2 receptor models were constructed based on the adenosine A2A receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β2AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation. Human N-formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) involved in many physiological processes, including host defense against bacterial infection and resolving inflammation. The three human FPRs (FPR1, FPR2 and FPR3) share significant sequence homology and perform their action via coupling to Gi protein. Activation of FPRs induces a variety of responses, which are dependent on the agonist, cell type, receptor subtype, and also species involved. FPRs are expressed mainly by phagocytic leukocytes. Together, these receptors bind a large number of structurally diverse groups of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. For example, N-formyl-Met-Leu-Phe (fMLF), an FPR1 agonist, activates human phagocyte inflammatory responses, such as intracellular calcium mobilization, production of cytokines, generation of reactive oxygen species, and chemotaxis. This ligand can efficiently activate the major bactericidal neutrophil functions and it was one of the first characterized bacterial chemotactic peptides. Whereas fMLF is by far the most frequently used chemotactic peptide in studies of neutrophil functions, atomistic descriptions for fMLF-FPR1 binding mode are still scarce mainly because of the absence of a crystal structure of this receptor. Elucidating the binding modes may contribute to designing novel and more efficient non-peptide FPR1 drug candidates. Molecular modeling of FPR1, on the other hand, can provide an efficient way to reveal details of ligand binding and activation of the receptor. However, recent modelings of FPRs were confined only to bovine rhodopsin as a template. To locate specific ligand-receptor interactions based on a more appropriate template than rhodopsin we generated the homology models of FPR1 using the crystal structure of the chemokine receptor CXCR4, which shares over 30% sequence identity with FPR1 and is located in the same γ branch of phylogenetic tree of GPCRs (rhodopsin is located in α branch). Docking and model refinement procedures were pursued afterward. Finally, 40 ns full-atom MD simulations were conducted for the Apo form as well as for complexes of fMLF (agonist) and tBocMLF (antagonist) with FPR1 in the membrane. Based on locations of the N- and C-termini of the ligand the FPR1 extracellular pocket can be divided into two zones, namely, the anchor and activation regions. The formylated M1 residue of fMLF bound to the activation region led to a series of conformational changes of conserved residues. Internal water molecules participating in extended hydrogen bond networks were found to play a crucial role in transmitting the agonist-receptor interactions. A mechanism of initial steps of the activation concurrent with ligand binding is proposed. I accurately predicted the structure and ligand binding pose of dopamine receptor 3 (RMSD to the crystal structure: 2.13 Å) and chemokine receptor 4 (CXCR4, RMSD to the crystal structure 3.21 Å) in GPCR-Dock 2010 competition. The homology model of the dopamine receptor 3 was 8 th best overall in the competition

    Smoking and Second Hand Smoking in Adolescents with Chronic Kidney Disease: A Report from the Chronic Kidney Disease in Children (CKiD) Cohort Study

    Get PDF
    The goal of this study was to determine the prevalence of smoking and second hand smoking [SHS] in adolescents with CKD and their relationship to baseline parameters at enrollment in the CKiD, observational cohort study of 600 children (aged 1-16 yrs) with Schwartz estimated GFR of 30-90 ml/min/1.73m2. 239 adolescents had self-report survey data on smoking and SHS exposure: 21 [9%] subjects had “ever” smoked a cigarette. Among them, 4 were current and 17 were former smokers. Hypertension was more prevalent in those that had “ever” smoked a cigarette (42%) compared to non-smokers (9%), p\u3c0.01. Among 218 non-smokers, 130 (59%) were male, 142 (65%) were Caucasian; 60 (28%) reported SHS exposure compared to 158 (72%) with no exposure. Non-smoker adolescents with SHS exposure were compared to those without SHS exposure. There was no racial, age, or gender differences between both groups. Baseline creatinine, diastolic hypertension, C reactive protein, lipid profile, GFR and hemoglobin were not statistically different. Significantly higher protein to creatinine ratio (0.90 vs. 0.53, p\u3c0.01) was observed in those exposed to SHS compared to those not exposed. Exposed adolescents were heavier than non-exposed adolescents (85th percentile vs. 55th percentile for BMI, p\u3c 0.01). Uncontrolled casual systolic hypertension was twice as prevalent among those exposed to SHS (16%) compared to those not exposed to SHS (7%), though the difference was not statistically significant (p= 0.07). Adjusted multivariate regression analysis [OR (95% CI)] showed that increased protein to creatinine ratio [1.34 (1.03, 1.75)] and higher BMI [1.14 (1.02, 1.29)] were independently associated with exposure to SHS among non-smoker adolescents. These results reveal that among adolescents with CKD, cigarette use is low and SHS is highly prevalent. The association of smoking with hypertension and SHS with increased proteinuria suggests a possible role of these factors in CKD progression and cardiovascular outcomes
    corecore