609 research outputs found

    Wide-angle absorption of visible light from simple bilayers

    Get PDF
    Color-selective absorption of light is a very significant operation used in numerous applications, from photonic sensing and switching to optical signal modulation and energy harnessing. We demonstrate angle-insensitive and polarization-independent absorption by thin bilayers comprising ordinary bulk media: dielectrics, semiconductors, and metals. Several highly efficient designs for each color of the visible spectrum are reported, and their internal fields’ distributions reveal the resonance mechanism of absorption. The proposed bilayer components are realizable, since various physical or chemical deposition methods can be used for their effective fabrication. The absorption process is found to exhibit endurance with respect to the longitudinal dimension of the planar structure, which means that the same designs could be successfully utilized in non-planar configurations composed of arbitrary shapes

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Tamm plasmon polariton in planar structures: A brief overview and applications

    Full text link
    Tamm plasmon provides a new avenue in plasmonics of interface states in planar multilayer structures due to its strong light matter interaction. This article reviews the research and development in Tamm plasmon polariton excited at the interface of a metal and a distributed Bragg reflector. Tamm plasmon offers an easy planar solution compared to patterned surface plasmon devices with huge field enhancement at the interface and does not require of any phase matching method for its excitation. The ease of depositing multilayer thin film stacks, direct optical excitation, and high-Q modes make Tamm plasmons an attractive field of research with potential practical applications. The basic properties of the Tamm plasmon modes including its dispersion, effect of different plasmon active metals, coupling with other resonant modes and their polarization splitting, and tunability of Tamm plasmon coupled hybrid modes under externally applied stimuli have been discussed. The application of Tamm plasmon modes in lasers, hot electron photodetectors, perfect absorbers, thermal emitters, light emitting devices, and sensors have also been discussed in detail. This review covers all the major advancements in this field over the last fifteen years with special emphasis on the application part

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Light Trapping in Plasmonic Solar Cells

    Get PDF
    Subwavelength nanostructures enable the manipulation and molding of light in nanoscale dimensions. By controlling and designing the complex dielectric function and nanoscale geometry we can affect the coupling of light into specific active materials and tune macroscale properties such as reflection, transmission, and absorption. Most solar cell systems face a trade-off with decreasing semiconductor thickness: reducing the semiconductor volume increases open circuit voltages, but also decreases the absorp- tion and thus the photocurrent. Light trapping is particularly critical for thin-film amorphous Si (a-Si:H) solar cells, which must be made less than optically thick to enable complete carrier collection. By enhancing absorption in a given semiconductor volume, we can achieve high efficiency devices with less than 100 nm of active region. In this thesis we explore the use of designed plasmonic nanostructures to couple incident sunlight into localized resonant modes and propagating waveguide modes of an ultrathin semiconductor for enhanced solar-to-electricity conversion. We begin by developing computational tools to analyze incoupling from sunlight to guided modes across the solar spectrum and a range of incident angles. We then show the potential of this method to result in absorption enhancements beyond the limits for thick film solar cells. The second part of this thesis describes the integration of plasmonic nanos- tructures with a-Si:H solar cells, showing that designed nanostructures can lead to enhanced photocurrent over randomly textured light trapping surfaces, and develops a computational model to accurately simulate the absorption in these structures. The final chapter discusses the fabrication of a high-efficiency (9.5%) solar cell with a less than 100 nm absorber layer and broadband, angle isotropic photocurrent enhance- ment. Moreover, we discuss general design rules where light trapping nanopatterns are defined by their spatial coherence spectral density.</p

    Innovative Long Wavelength Infrared Detector Workshop Proceedings

    Get PDF
    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies

    Semiconductor Infrared Devices and Applications

    Get PDF
    Infrared (IR) technologies—from Herschel’s initial experiment in the 1800s to thermal detector development in the 1900s, followed by defense-focused developments using HgCdTe—have now incorporated a myriad of novel materials for a wide variety of applications in numerous high-impact fields. These include astronomy applications; composition identifications; toxic gas and explosive detection; medical diagnostics; and industrial, commercial, imaging, and security applications. Various types of semiconductor-based (including quantum well, dot, ring, wire, dot in well, hetero and/or homo junction, Type II super lattice, and Schottky) IR (photon) detectors, based on various materials (type IV, III-V, and II-VI), have been developed to satisfy these needs. Currently, room temperature detectors operating over a wide wavelength range from near IR to terahertz are available in various forms, including focal plane array cameras. Recent advances include performance enhancements by using surface Plasmon and ultrafast, high-sensitivity 2D materials for infrared sensing. Specialized detectors with features such as multiband, selectable wavelength, polarization sensitive, high operating temperature, and high performance (including but not limited to very low dark currents) are also being developed. This Special Issue highlights advances in these various types of infrared detectors based on various material systems

    Bolometers

    Get PDF
    Infrared Detectors and technologies are very important for a wide range of applications, not only for Military but also for various civilian applications. Comparatively fast bolometers can provide large quantities of low cost devices opening up a new era in infrared technologies. This book deals with various aspects of bolometer developments. It covers bolometer material aspects, different types of bolometers, performance limitations, applications and future trends. The chapters in this book will be useful for senior researchers as well as beginning graduate students

    Infrared Radiation

    Get PDF
    This book represents a collection of scientific articles covering the field of infrared radiation. It offers extensive information about current scientific research and engineering developments in this area. Each chapter has been thoroughly revised and each represents significant contribution to the scientific community interested in this matter. Developers of infrared technique, technicians using infrared equipment and scientist that have interest in infrared radiation and its interaction with medium will comprise the main readership as they search for current studies on the use of infrared radiation. Moreover this book can be useful to students and postgraduates with appropriate specialty and also for multifunctional workers
    corecore