237 research outputs found

    Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

    Get PDF
    This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today\u27s advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle\u27s trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information. This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman\u27s principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows: First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle. Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview. We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow. Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments

    ENERGY CONSUMPTION AND SAVINGS ANALYSIS OF A PHEV IN REAL WORLD DRIVING THROUGH VEHICLE CONNECTIVITY USING VEHICLE PLATOONING, BLENDED MODE OPERATION AND ENGINE START-STOP OPTIMIZERS

    Get PDF
    This report presents an analysis on energy consumption of a Gen II Chevrolet Volt PHEV and its energy savings potential in Real World Driving scenarios with the help of vehicle connectivity. The research on the energy consumption analysis and optimization using connectivity will focus on four main areas of contribution which includes 1.) vehicle testing on a pre-defined drive cycle and alternative routing near the Michigan Tech campus and APS research center that is a continuation of previous students\u27 works, 2) the energy savings potential of vehicle platooning and various vehicle platoon configurations, 3) the updating of a PHEV implementation of a charge depleting-charge sustaining energy blending optimization algorithm and 4) the development of an IC Engine start-stop prediction algorithm for HEV and PHEV\u27s using connectivity data. The first part of the report discusses the development of a Real World Drive Cycle called Reverse MTU Drive Cycle which is the successor of MTU Drive Cycle, a drive cycle previously developed local to the Michigan Technological University. The energy consumption of the PHEV on the R-MTUDC is analyzed and the baseline characteristics of the drive cycle is setup. A set of baseline drive cycle characteristics was developed and tests on the drive cycle proved that the energy consumption on the real-world drive route is consistent with variability less than 3%. The next part of the report investigates the energy savings potential of the cars when they are traveling in a platoon rather than independently. Various tests have been conducted to investigate energy savings under different platoon scenarios, like variable gap settings, variable speeds, inclusion of a vehicle with aero-modifier and effect of moving collinearly in a platoon. A platoon wide savings as high as 8.3% was achieved in the study. After that, the report discusses the on-road implementation of a Route Based Blended Mode Optimizer, in PHEVs, which comes up with an optimal control matrix using Dynamic Programming and Cost-To-Go matrix, to make use of the Hold mode capability of the Volts, to operate the cars in Charge Sustaining mode at sections of Drive Cycles where it is most efficient to be operated. Upto, 5% savings in energy was obtained using the optimizer. Some of the runs didn\u27t provide the desired results and this is also investigated. Finally, the report presents the development of two kinds of Engine Start-Stop Optimizers, which utilizes vehicle connectivity and vehicle energy consumption model to come up with an optimal control map of regions on the predicted driving route where the engine should be turned On and Off for minimizing energy consumption in HEVs and PHEVs. The first optimizer uses vehicle and route characteristics to predict engine starts and stops and then optimizes these signals based on decisions made from energy calculations. The second optimizer uses Dynamic Programming to create a matrix of engine On and Off signals based on the route characteristics. These controllers are shown to provide energy savings as high as 8% on some routes

    Real-Time Optimal Control of a Plug-in Hybrid Electric Vehicle Using Trip Information

    Get PDF
    The plug-in hybrid electric vehicle (PHEV) is a promising option for future sustainable transportation. It offers better fuel economy and lower emissions than conventional vehicles. This thesis has developed a novel energy-optimal powertrain controller for PHEVs. The controller will be broadly applicable to all PHEV models; however, it will be fine-tuned to the Toyota Prius Plug-in Hybrid for testing and validation. The controller will take advantage of advancements in vehicle intelligent and communications technologies, such as Global Positioning System (GPS), Intelligent Transportation System (ITS), Geographic Information System (GIS), radar, and other on-board sensors, to provide look-ahead trip data. These data are critical to increasing fuel economy as well as driving safety. This PhD research has developed three energy-optimal systems for PHEVs: Trip Planning module, Route-based Energy Management System (Route-based EMS), and Ecological Cruise (Eco-Cruise) Controller. The main objective of these energy-optimal systems is to minimize the total energy cost, including both electricity derived from the grid and fuel. The upper-level system is Trip Planning, using an algorithm designed to take advantage of previewed trip information to optimize State of Charge (SOC) profiles. The Route-based EMS optimally distributes propulsion power between the batteries and engine. Finally, the Eco-Cruise controller adjusts the speed considering upcoming trip data. Real-time implementation has remained a major challenge in the design of complex control systems. To address this hurdle, simple and efficient models and fast optimization algorithms are developed for each energy-optimal strategy. A Real-time Cluster-based Optimization is developed to solve the Trip Planning problem in real-time. The Route-based EMS is developed based on Equivalent Consumption Minimization Strategy (ECMS) to optimally distribute propulsion power between two energy sources. And, a Nonlinear Model Predictive Control (NMPC) is utilized to obtain optimum traction or regenerative torques in Eco-Cruise controller. Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) testing are critical steps in control validation and in ensuring real-time implementation capability. The MIL results show that the novel energy-optimal powertrain controller can improve the total energy cost by up to %20 compare to benchmark rule-based controller. The HIL test results demonstrate that the computational time for energy-optimal strategies are less than the target sampling-time, and they can be implemented in real-time

    An Optimization Approach for Energy Efficient Coordination Control of Vehicles in Merging Highways

    Get PDF
    Environmental concerns along with stronger governmental regulations regarding automotive fuel-economy and greenhouse-gas emissions are contributing to the push for development of more sustainable transportation technologies. Furthermore, the widespread use of the automobile gives rise to other issues such as traffic congestion and increasing traffic accidents. Consequently, two main goals of new technologies are the reduction of vehicle fuel consumption and emissions and the reduction of traffic congestion. While an extensive list of published work addresses the problem of fuel consumption reduction by optimizing the vehicle powertrain operations, particularly in the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic coordination have been studied more recently as alternative methods that can, in addition, address the problem of traffic congestion and traffic accidents reduction. This dissertation builds on some of those approaches, with particular emphasis on autonomous vehicle coordination control. In this direction, the objective is to derive an optimization approach for energy efficient and safe coordination control of vehicles in merging highways. Most of the current optimization-based centralized approaches to this problem are solved numerically, at the expense of a high computational load which limits their potential for real-time implementation. In addition, closed-form solutions, which are desired to facilitate traffic analysis and the development of approaches to address interconnected merging/intersection points and achieve further traffic improvements at the road-network level, are very limited in the literature. In this dissertation, through the application of the Pontryagin’s minimum principle, a closed-form solution is obtained which allows the implementation of a real-time centralized optimal control for fleets of vehicles. The results of applying the proposed framework show that the system can reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with respect to a scenario with not coordination strategy. By integrating the traffic coordination scheme with in-vehicle energy management, a two level optimization system is achieved which allows assessing the benefits of integrating hybrid electric vehicles into the road network. Regarding in-vehicle energy optimization, four methods are developed to improve the tuning process of the equivalent consumption optimization strategy (ECMS). First, two model predictive control (MPC)-based strategies are implemented and the results show improvements in the efficiency obtained with the standard ECMS implementation. On the other hand, the research efforts focus in performing analysis of the engine and electric motor operating points which can lead to the optimal tuning of the ECMS with reduced iterations. Two approaches are evaluated and even though the results in fuel economy are slightly worse than those for the standard ECMS, they show potential to significantly reduce the tuning time of the ECMS. Additionally, the benefits of having less aggressive driving profiles on different powertrain technologies such as conventional, plug-in hybrid and electric vehicles are studied

    Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning

    Get PDF
    The climate-adaptive energy management system holds promising potential for harnessing the concealed energy-saving capabilities of connected plug-in hybrid electric vehicles. This research focuses on exploring the synergistic effects of artificial intelligence control and traffic preview to enhance the performance of the energy management system (EMS). A high-fidelity model of a multi-mode connected PHEV is calibrated using experimental data as a foundation. Subsequently, a model-free multistate deep reinforcement learning (DRL) algorithm is proposed to develop the integrated thermal and energy management (ITEM) system, incorporating features of engine smart warm-up and engine-assisted heating for cold climate conditions. The optimality and adaptability of the proposed system is evaluated through both offline tests and online hardware-in-the-loop tests, encompassing a homologation driving cycle and a real-world driving cycle in China with real-time traffic data. The results demonstrate that ITEM achieves a close to dynamic programming fuel economy performance with a margin of 93.7%, while reducing fuel consumption ranging from 2.2% to 9.6% as ambient temperature decreases from 15°C to -15°C in comparison to state-of-the-art DRL-based EMS solutions

    A Novel Learning Based Model Predictive Control Strategy for Plug-in Hybrid Electric Vehicle

    Get PDF
    The multi-source electromechanical coupling renders energy management of plug-in hybrid electric vehicles (PHEVs) highly nonlinear and complex. Furthermore, the complicated nonlinear management process highly depends on knowledge of driving conditions, and hinders the control strategies efficiently applied instantaneously, leading to massive challenges in energy saving improvement of PHEVs. To address these issues, a novel learning based model predictive control (LMPC) strategy is developed for a serial-parallel PHEV with the reinforced optimal control effect in real time application. Rather than employing the velocity-prediction based MPC methods favored in the literature, an original reference-tracking based MPC solution is proposed with strong instant application capacity. To guarantee the optimal control effect, an online learning process is implemented in MPC via the Gaussian process (GP) model to address the uncertainties during state estimation. The tracking reference in LMPC based control problem in PHEV is achieved by a microscopic traffic flow analysis (MTFA) method. The simulation results validate that the proposed method can optimally manage energy flow within vehicle power sources in real time, highlighting its anticipated preferable performance

    Design of optimal rule-based controller for plug-in series hybrid electric vehicle

    Get PDF
    International audienceEnergy consumption of Hybrid Electric Vehicles (HEV) strongly depends on the adopted energy management strategy (EMS). Rule-Based (RB) controllers are the most commonly used for their ability of integration in real-time applications. Unlike global optimization routines, RB controllers do not ensure optimal energy savings. This study presents a methodology to design a close-to-optimal RB controller derived from global optimization strategies. First, dynamic programming (DP) optimization is used to derive the optimal behaviour of the powertrain components on the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), and then, the resulting performance of the powertrain components is used to design an optimized RB energy management strategy. Furthermore, the strategy is developed to cope with the variations in trip length and traffic conditions. The plug-in series hybrid electric vehicle is modelled using the energetic macroscopic representation (EMR). Results show that the proposed optimal RB controller is only consuming 1-2% more fuel compared to DP controllers and is resulting in a 13-16% less fuel consumption compared to basic RB controllers

    REAL-TIME PREDICTIVE CONTROL OF CONNECTED VEHICLE POWERTRAINS FOR IMPROVED ENERGY EFFICIENCY

    Get PDF
    The continued push for the reduction of energy consumption across the automotive vehicle fleet has led to widespread adoption of hybrid and plug-in hybrid electric vehicles (PHEV) by auto manufacturers. In addition, connected and automated vehicle (CAV) technologies have seen rapid development in recent years and bring with them the potential to significantly impact vehicle energy consumption. This dissertation studies predictive control methods for PHEV powertrains that are enabled by CAV technologies with the goal of reducing vehicle energy consumption. First, a real-time predictive powertrain controller for PHEV energy management is developed. This controller utilizes predictions of future vehicle velocity and power demand in order to optimize powersplit decisions of the vehicle. This predictive powertrain controller utilizes nonlinear model predictive control (NMPC) to perform this optimization while being cognizant of future vehicle behavior. Second, the developed NMPC powertrain controller is thoroughly evaluated both in simulation and real-time testing. The controller is assessed over a large number of standardized and real-world drive cycles in simulation in order to properly quantify the energy savings benefits of the controller. In addition, the NMPC powertrain controller is deployed onto a real-time rapid prototyping embedded controller installed in a test vehicle. Using this real-time testing setup, the developed NMPC powertrain controller is evaluated using on-road testing for both energy savings performance and real-time performance. Third, a real-time integrated predictive powertrain controller (IPPC) for a multi-mode PHEV is presented. Utilizing predictions of future vehicle behavior, an optimal mode path plan is computed in order to determine a mode command best suited to the future conditions. In addition, this optimal mode path planning controller is integrated with the NMPC powertrain controller to create a real-time integrated predictive powertrain controller that is capable of full supervisory control for a multi-mode PHEV. Fourth, the IPPC is evaluated in simulation testing across a range of standard and real-world drive cycles in order to quantify the energy savings of the controller. This analysis is comprised of the combined benefit of the NMPC powertrain controller and the optimal mode path planning controller. The IPPC is deployed onto a rapid prototyping embedded controller for real-time evaluation. Using the real-time implementation of the IPPC, on-road testing was performed to assess both energy benefits and real-time performance of the IPPC. Finally, as the controllers developed in this research were evaluated for a single vehicle platform, the applicability of these controllers to other platforms is discussed. Multiple cases are discussed on how both the NMPC powertrain controller and the optimal mode path planning controller can be applied to other vehicle platforms in order to broaden the scope of this research
    • …
    corecore