15,171 research outputs found

    Near-optimal bounds for phase synchronization

    Full text link
    The problem of phase synchronization is to estimate the phases (angles) of a complex unit-modulus vector zz from their noisy pairwise relative measurements C=zz+σWC = zz^* + \sigma W, where WW is a complex-valued Gaussian random matrix. The maximum likelihood estimator (MLE) is a solution to a unit-modulus constrained quadratic programming problem, which is nonconvex. Existing works have proposed polynomial-time algorithms such as a semidefinite relaxation (SDP) approach or the generalized power method (GPM) to solve it. Numerical experiments suggest both of these methods succeed with high probability for σ\sigma up to O~(n1/2)\tilde{\mathcal{O}}(n^{1/2}), yet, existing analyses only confirm this observation for σ\sigma up to O(n1/4)\mathcal{O}(n^{1/4}). In this paper, we bridge the gap, by proving SDP is tight for σ=O(n/logn)\sigma = \mathcal{O}(\sqrt{n /\log n}), and GPM converges to the global optimum under the same regime. Moreover, we establish a linear convergence rate for GPM, and derive a tighter \ell_\infty bound for the MLE. A novel technique we develop in this paper is to track (theoretically) nn closely related sequences of iterates, in addition to the sequence of iterates GPM actually produces. As a by-product, we obtain an \ell_\infty perturbation bound for leading eigenvectors. Our result also confirms intuitions that use techniques from statistical mechanics.Comment: 34 pages, 1 figur

    The Impact of CSI and Power Allocation on Relay Channel Capacity and Cooperation Strategies

    Full text link
    Capacity gains from transmitter and receiver cooperation are compared in a relay network where the cooperating nodes are close together. Under quasi-static phase fading, when all nodes have equal average transmit power along with full channel state information (CSI), it is shown that transmitter cooperation outperforms receiver cooperation, whereas the opposite is true when power is optimally allocated among the cooperating nodes but only CSI at the receiver (CSIR) is available. When the nodes have equal power with CSIR only, cooperative schemes are shown to offer no capacity improvement over non-cooperation under the same network power constraint. When the system is under optimal power allocation with full CSI, the decode-and-forward transmitter cooperation rate is close to its cut-set capacity upper bound, and outperforms compress-and-forward receiver cooperation. Under fast Rayleigh fading in the high SNR regime, similar conclusions follow. Cooperative systems provide resilience to fading in channel magnitudes; however, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together for the decode-and-forward scheme to be capacity-achieving. Moreover, to realize capacity improvement, full CSI is necessary in transmitter cooperation, while in receiver cooperation optimal power allocation is essential.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    On bounds and algorithms for frequency synchronization for collaborative communication systems

    Full text link
    Cooperative diversity systems are wireless communication systems designed to exploit cooperation among users to mitigate the effects of multipath fading. In fairly general conditions, it has been shown that these systems can achieve the diversity order of an equivalent MISO channel and, if the node geometry permits, virtually the same outage probability can be achieved as that of the equivalent MISO channel for a wide range of applicable SNR. However, much of the prior analysis has been performed under the assumption of perfect timing and frequency offset synchronization. In this paper, we derive the estimation bounds and associated maximum likelihood estimators for frequency offset estimation in a cooperative communication system. We show the benefit of adaptively tuning the frequency of the relay node in order to reduce estimation error at the destination. We also derive an efficient estimation algorithm, based on the correlation sequence of the data, which has mean squared error close to the Cramer-Rao Bound.Comment: Submitted to IEEE Transaction on Signal Processin

    On recovery guarantees for angular synchronization

    Full text link
    The angular synchronization problem of estimating a set of unknown angles from their known noisy pairwise differences arises in various applications. It can be reformulated as a optimization problem on graphs involving the graph Laplacian matrix. We consider a general, weighted version of this problem, where the impact of the noise differs between different pairs of entries and some of the differences are erased completely; this version arises for example in ptychography. We study two common approaches for solving this problem, namely eigenvector relaxation and semidefinite convex relaxation. Although some recovery guarantees are available for both methods, their performance is either unsatisfying or restricted to the unweighted graphs. We close this gap, deriving recovery guarantees for the weighted problem that are completely analogous to the unweighted version.Comment: 20 pages, 5 figure

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Synchronization learning of coupled chaotic maps

    Full text link
    We study the dynamics of an ensemble of globally coupled chaotic logistic maps under the action of a learning algorithm aimed at driving the system from incoherent collective evolution to a state of spontaneous full synchronization. Numerical calculations reveal a sharp transition between regimes of unsuccessful and successful learning as the algorithm stiffness grows. In the regime of successful learning, an optimal value of the stiffness is found for which the learning time is minimal
    corecore