6,288 research outputs found

    Tighter Estimates for ϵ-nets for Disks

    Get PDF
    International audienceThe geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points, and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D. In 1994, Bronniman and Goodrich [5] made an important connection of this problem to the size of fundamental combinatorial structures called ϵ-nets, showing that small-sized ϵ-nets imply approximation algorithms with correspondingly small approximation ratios. Very recently, Agarwal and Pan [2] showed that their scheme can be implemented in near-linear time for disks in the plane. Altogether this gives O(1)-factor approximation algorithms in O(n) time for hitting sets for disks in the plane. This constant factor depends on the sizes of ϵ-nets for disks; unfortunately, the current state-of-the-art bounds are large – at least 24/ϵ and most likely larger than 40/ϵ. Thus the approximation factor of the Agarwal and Pan algorithm ends up being more than 40. The best lower-bound is 2/ϵ, which follows from the Pach-Woeginger construction [32] for halfplanes in two dimensions. Thus there is a large gap between the best-known upper and lower bounds. Besides being of independent interest, finding precise bounds is important since this immediately implies an improved linear-time algorithm for the hitting-set problem. The main goal of this paper is to improve the upper-bound to 13.4/ϵ for disks in the plane. The proof is constructive, giving a simple algorithm that uses only Delaunay triangulations. We have implemented the algorithm, which is available as a public open-source module. Experimental results show that the sizes of-nets for a variety of data-sets is lower, around 9/ϵ

    Conditional Hardness of Earth Mover Distance

    Get PDF
    The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension. In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results: - Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time. - Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions. - Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions

    Conditional Hardness of Earth Mover Distance

    Get PDF
    The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension. In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results: - Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time. - Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions. - Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    Fast Distributed Algorithms for LP-Type Problems of Bounded Dimension

    Full text link
    In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    On Variants of k-means Clustering

    Get PDF
    \textit{Clustering problems} often arise in the fields like data mining, machine learning etc. to group a collection of objects into similar groups with respect to a similarity (or dissimilarity) measure. Among the clustering problems, specifically \textit{kk-means} clustering has got much attention from the researchers. Despite the fact that kk-means is a very well studied problem its status in the plane is still an open problem. In particular, it is unknown whether it admits a PTAS in the plane. The best known approximation bound in polynomial time is 9+\eps. In this paper, we consider the following variant of kk-means. Given a set CC of points in Rd\mathcal{R}^d and a real f>0f > 0, find a finite set FF of points in Rd\mathcal{R}^d that minimizes the quantity fF+pCminqFpq2f*|F|+\sum_{p\in C} \min_{q \in F} {||p-q||}^2. For any fixed dimension dd, we design a local search PTAS for this problem. We also give a "bi-criterion" local search algorithm for kk-means which uses (1+\eps)k centers and yields a solution whose cost is at most (1+\eps) times the cost of an optimal kk-means solution. The algorithm runs in polynomial time for any fixed dimension. The contribution of this paper is two fold. On the one hand, we are being able to handle the square of distances in an elegant manner, which yields near optimal approximation bound. This leads us towards a better understanding of the kk-means problem. On the other hand, our analysis of local search might also be useful for other geometric problems. This is important considering that very little is known about the local search method for geometric approximation.Comment: 15 page

    The covert set-cover problem with application to Network Discovery

    Full text link
    We address a version of the set-cover problem where we do not know the sets initially (and hence referred to as covert) but we can query an element to find out which sets contain this element as well as query a set to know the elements. We want to find a small set-cover using a minimal number of such queries. We present a Monte Carlo randomized algorithm that approximates an optimal set-cover of size OPTOPT within O(logN)O(\log N) factor with high probability using O(OPTlog2N)O(OPT \cdot \log^2 N) queries where NN is the input size. We apply this technique to the network discovery problem that involves certifying all the edges and non-edges of an unknown nn-vertices graph based on layered-graph queries from a minimal number of vertices. By reducing it to the covert set-cover problem we present an O(log2n)O(\log^2 n)-competitive Monte Carlo randomized algorithm for the covert version of network discovery problem. The previously best known algorithm has a competitive ratio of Ω(nlogn)\Omega (\sqrt{n\log n}) and therefore our result achieves an exponential improvement
    corecore