18,086 research outputs found

    Positional estimation techniques for an autonomous mobile robot

    Get PDF
    Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented

    A Proposal Concerning the Analysis of Shadows in Images by an Active Observer (Dissertation Proposal)

    Get PDF
    Shadows occur frequently in indoor scenes and outdoors on sunny days. Despite the information inherent in shadows about a scene\u27s geometry and lighting conditions, relatively little work in image understanding has addressed the important problem of recognizing shadows. This is an even more serious failing when one considers the problems shadows pose for many visual techniques such as object recognition and shape from shading. Shadows are difficult to identify because they cannot be infallibly recognized until a scene\u27s geometry and lighting are known. However, there are a number of cues which together strongly suggest the identification of a shadow. We present a list of these cues and methods which can be used by an active observer to detect shadows. By an active observer, we mean an observer that is not only mobile, but can extend a probe into its environment. The proposed approach should allow the extraction of shadows in real time. Furthermore, the identification of a shadow should improve with observing time. In order to be able to identify shadows without or prior to obtaining information about the arrangement of objects or information about the spectral properties of materials in the scene, we provide the observer with a probe with which to cast its own shadows. Any visible shadows cast by the probe can be easily identified because they will be new to the scene. These actively obtained shadows allow the observer to experimentally determine the number and location of light sources in the scene, to locate the cast shadows, and to gain information about the likely spectral changes due to shadows. We present a novel method for locating a light source and the surface on which a shadow is cast. It takes into account errors in imaging and image processing and, furthermore, it takes special advantage of the benefits of an active observer. The information gained from the probe is of particular importance in effectively using the various shadow cues. In the course of identifying shadows, we also present a new modification on an image segmentation algorithm. Our modification provides a general description of color images in terms of regions that is particularly amenable to the analysis of shadows

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes

    Full text link
    The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the VERITAS Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the ≤0.1\leq0.1 milliarcsecond scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom

    Project Slope - A study of lunar orbiter photographic evaluation secondary analysis tasks Final report

    Get PDF
    Project SLOPE /Study of Lunar Orbiter Photographic Evaluation/ techniques, implementation and accurac

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Visual Computing and Machine Learning Techniques for Digital Forensics

    Get PDF
    It is impressive how fast science has improved day by day in so many different fields. In special, technology advances are shocking so many people bringing to their reality facts that previously were beyond their imagination. Inspired by methods earlier presented in scientific fiction shows, the computer science community has created a new research area named Digital Forensics, which aims at developing and deploying methods for fighting against digital crimes such as digital image forgery.This work presents some of the main concepts associated with Digital Forensics and, complementarily, presents some recent and powerful techniques relying on Computer Graphics, Image Processing, Computer Vision and Machine Learning concepts for detecting forgeries in photographs. Some topics addressed in this work include: sourceattribution, spoofing detection, pornography detection, multimedia phylogeny, and forgery detection. Finally, this work highlights the challenges and open problems in Digital Image Forensics to provide the readers with the myriad opportunities available for research

    A novel approach to neutron dosimetry

    Get PDF
    Purpose: Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. Methods: A 6Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Results: Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. Conclusions: This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose
    • …
    corecore