116,794 research outputs found

    A Framework for Genetic Algorithms Based on Hadoop

    Full text link
    Genetic Algorithms (GAs) are powerful metaheuristic techniques mostly used in many real-world applications. The sequential execution of GAs requires considerable computational power both in time and resources. Nevertheless, GAs are naturally parallel and accessing a parallel platform such as Cloud is easy and cheap. Apache Hadoop is one of the common services that can be used for parallel applications. However, using Hadoop to develop a parallel version of GAs is not simple without facing its inner workings. Even though some sequential frameworks for GAs already exist, there is no framework supporting the development of GA applications that can be executed in parallel. In this paper is described a framework for parallel GAs on the Hadoop platform, following the paradigm of MapReduce. The main purpose of this framework is to allow the user to focus on the aspects of GA that are specific to the problem to be addressed, being sure that this task is going to be correctly executed on the Cloud with a good performance. The framework has been also exploited to develop an application for Feature Subset Selection problem. A preliminary analysis of the performance of the developed GA application has been performed using three datasets and shown very promising performance

    Competitive function approximation for reinforcement learning

    Get PDF
    The application of reinforcement learning to problems with continuous domains requires representing the value function by means of function approximation. We identify two aspects of reinforcement learning that make the function approximation process hard: non-stationarity of the target function and biased sampling. Non-stationarity is the result of the bootstrapping nature of dynamic programming where the value function is estimated using its current approximation. Biased sampling occurs when some regions of the state space are visited too often, causing a reiterated updating with similar values which fade out the occasional updates of infrequently sampled regions. We propose a competitive approach for function approximation where many different local approximators are available at a given input and the one with expectedly best approximation is selected by means of a relevance function. The local nature of the approximators allows their fast adaptation to non-stationary changes and mitigates the biased sampling problem. The coexistence of multiple approximators updated and tried in parallel permits obtaining a good estimation much faster than would be possible with a single approximator. Experiments in different benchmark problems show that the competitive strategy provides a faster and more stable learning than non-competitive approaches.Preprin
    • …
    corecore