323 research outputs found

    Modelling the impact of sky-bridges on total evacuation for high-rise buildings

    Get PDF
    This study examines the impact of sky-bridges, as an egress component, on total evacuation of a high-rise building by using an evacuation model named Pathfinder. Five scenarios, with different combination of aspects such as height of the building, number of sky-bridges (and the subsequent inter-distance between them), and people allocation have been simulated. The comparison between the results from the simulations indicates that sky-bridges significantly shorten the total evacuation time if used by all occupants above or at each refuge floor. Furthermore the comparison between the scenarios with different heights and the same inter-distance between the sky-bridges shows that the total evacuation time is approximately the same, as the buildings are divided in zones containing equal number of floors. However the comparison between two buildings with the same height but different inter-distance between the sky-bridges point out that the total evacuation time increases with increased inter-distance between the sky-bridges and vice versa

    Integrated Special Event Traffic Management Strategies in Urban Transportation Network

    Get PDF
    How to effectively optimize and control spreading traffic in urban network during the special event has emerged as one of the critical issues faced by many transportation professionals in the past several decades due to the surging demand and the often limited network capacity. The contribution of this dissertation is to develop a set of integrated mathematical programming models for unconventional traffic management of special events in urban transportation network. Traffic management strategies such as lane reorganization and reversal, turning restriction, lane-based signal timing, ramp closure, and uninterrupted flow intersection will be coordinated and concurrently optimized for best overall system performance. Considering the complexity of the proposed formulations and the concerns of computing efficiency, this study has also developed efficient solution heuristics that can yield sufficiently reliable solutions for real-world application. Case studies and extensive numerical analyses results validate the effectiveness and applicability of the proposed models

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network

    An operational research-based integrated approach for mass evacuation planning of a city

    Get PDF
    Large-scale disasters are constantly occurring around the world, and in many cases evacuation of regions of city is needed. ‘Operational Research/Management Science’ (OR/MS) has been widely used in emergency planning for over five decades. Warning dissemination, evacuee transportation and shelter management are three ‘Evacuation Support Functions’ (ESF) generic to many hazards. This thesis has adopted a case study approach to illustrate the importance of integrated approach of evacuation planning and particularly the role of OR/MS models. In the warning dissemination phase, uncertainty in the household’s behaviour as ‘warning informants’ has been investigated along with uncertainties in the warning system. An agentbased model (ABM) was developed for ESF-1 with households as agents and ‘warning informants’ behaviour as the agent behaviour. The model was used to study warning dissemination effectiveness under various conditions of the official channel. In the transportation phase, uncertainties in the household’s behaviour such as departure time (a function of ESF-1), means of transport and destination have been. Households could evacuate as pedestrians, using car or evacuation buses. An ABM was developed to study the evacuation performance (measured in evacuation travel time). In this thesis, a holistic approach for planning the public evacuation shelters called ‘Shelter Information Management System’ (SIMS) has been developed. A generic allocation framework of was developed to available shelter capacity to the shelter demand by considering the evacuation travel time. This was formulated using integer programming. In the sheltering phase, the uncertainty in household shelter choices (either nearest/allocated/convenient) has been studied for its impact on allocation policies using sensitivity analyses. Using analyses from the models and detailed examination of household states from ‘warning to safety’, it was found that the three ESFs though sequential in time, however have lot of interdependencies from the perspective of evacuation planning. This thesis has illustrated an OR/MS based integrated approach including and beyond single ESF preparedness. The developed approach will help in understanding the inter-linkages of the three evacuation phases and preparing a multi-agency-based evacuation planning evacuatio

    On Evacuation Planning Optimization Problems from Transit-based Perspective

    Get PDF
    Increasing number of complex traffic networks and disasters today has brought difficulty in managing the rush hours traffic as well as the large events in urban areas. The optimal use of the vehicles and their assignments to the appropriate shelters from the disastrous zones are highly complicated in emergency situations. The maximum efficiency and effectiveness of the evacuation planning can be achieved by the appropriate and significant assignment of the transit dependent vehicles during pre and post-disaster operations. This paper presents a comprehensive overview of the evacuation planning optimization techniques developed over the years, emphasizing the importance of their formulation and the solution strategies on disaster management from the transit-based perspective. Each technique is briefly described and presented lucidly with some of its known applications, significances, and solution strategies expecting that it should be able to guide much more interest into this important and growing area of research

    A Spatial Agent-based Model for Volcanic Evacuation of Mt. Merapi

    Get PDF
    Natural disasters, especially volcanic eruptions, are hazardous events that frequently happen in Indonesia. As a country within the “Ring of Fire”, Indonesia has hundreds of volcanoes and Mount Merapi is the most active. Historical studies of this volcano have revealed that there is potential for a major eruption in the future. Therefore, long-term disaster management is needed. To support the disaster management, physical and socially-based research has been carried out, but there is still a gap in the development of evacuation models. This modelling is necessary to evaluate the possibility of unexpected problems in the evacuation process since the hazard occurrences and the population behaviour are uncertain. The aim of this research was to develop an agent-based model (ABM) of volcanic evacuation to improve the effectiveness of evacuation management in Merapi. Besides the potential use of the results locally in Merapi, the development process of this evacuation model contributes by advancing the knowledge of ABM development for large-scale evacuation simulation in other contexts. Its novelty lies in (1) integrating a hazard model derived from historical records of the spatial impact of eruptions, (2) formulating and validating an individual evacuation decision model in ABM based on various interrelated factors revealed from literature reviews and surveys that enable the modelling of reluctant people, (3) formulating the integration of multi-criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model of risk (STDMR) that enables representation of the changing of risk as a consequence of changing hazard level, hazard extent and movement of people, and (4) formulating an evacuation staging method based on MCE using geographic and demographic criteria. The volcanic evacuation model represents the relationships between physical and human agents, consisting of the volcano, stakeholders, the population at risk and the environment. The experimentation of several evacuation scenarios in Merapi using the developed ABM of evacuation shows that simultaneous strategy is superior in reducing the risk, but the staged scenario is the most effective in minimising the potential of road traffic problems during evacuation events in Merapi. Staged evacuation can be a good option when there is enough time to evacuate. However, if the evacuation time is limited, the simultaneous strategy is better to be implemented. Appropriate traffic management should be prepared to avoid traffic problems when the second option is chosen

    An Integrated Optimal Control System for Emergency Evacuation

    Get PDF
    How to effectively control evacuation traffic has emerged as one of the critical research issues in transportation community, due to the unusually high demand surge and the often limited network capacity. This dissertation has developed an integrated traffic control system for evacuation operations that may require concurrent implementation of different control options, including traffic routing, contraflow operation, staged evacuation, and intersection signal control. The system applies a hierarchical control framework to achieve a trade-off between modeling accuracy and operational efficiency for large-scale network applications. The network-level optimization formulations function to assign traffic to different evacuation corridors, select lane reversal configurations for contraflow operations, and identify the evacuation sequence of different demand zones for staged evacuation. With special constraints to approximate flow interactions at intersections, the formulations have introduced two network enhancement approaches with the aim to capture the real-world operational complexities associated with contraflow operations and staged evacuation. The corridor-level optimization formulations, taking the network-level decisions as input, function to identify the critical control points and generate the optimal signal timings along the major evacuation corridors. The formulations feature the critical intersection concept to reduce the interference of side-street traffic on arterial evacuation flows. This study has also developed an efficient solution method using the Genetic Algorithm based heuristics along with an embedded macroscopic simulator. This dissertation has also proposed a revised cell transmission model that aims to capture the complex temporal and spatial interactions of evacuation traffic flows for both levels of optimization formulations. This model can significantly reduce the size of the optimization problem, and yet preserve the ability in effectively modeling network traffic dynamics. Numerical studies were conducted for each individual control component as well as for the entire integrated control system. The results reveal that the staged evacuation and contraflow strategies generated from the proposed formulations can substantially improve the evacuation efficiency and effectively reduce network congestions. Signal control strategies with the critical intersection concept also outperform the state-of-the-practice evacuation signal plans

    SIMULATION AND MATHEMATICAL MODELING TO SUPPORT COMMUNITY-WIDE EVACUATION DECISIONS FOR MULTIPLE POPULATION GROUPS

    Get PDF
    Evacuating a large population from an at-risk area has been the subject of extensive research over the past few decades. In order to measure trip completion and total evacuation times accurately, most researchers have implemented some combination of simulation and optimization methods to provide vehicular flow and congestion data. While the general at-risk population comprises the majority of travelers on the road network, there are often specific groups to consider when assessing the ability to evacuate an entire population. In particular, healthcare facilities (e.g., hospitals) may require evacuation, and the trip times may become an important health issue for patients being evacuated. Emergency vehicles from these facilities will share the same roadways and exit paths that are used by the local community, and it becomes increasingly important to minimize long travel times when patient care must be provided during transport. As the size of the area to model grows larger, predicting individual vehicle performance becomes more difficult. Standard transportation-specific micro-simulation, which models vehicle interactions and driver behaviors in detail, may perform very well on road networks that are smaller in size. In this research, a novel modeling approach, based on cell transmission and a speed-flow relationship, is proposed that combines the \u27micro\u27 and \u27meso\u27 approaches of simulation modeling. The model is developed using a general purpose simulation software package. This allows for an analysis at each vehicle level in the travel network. In addition, using these method and approaches, we can carry out dynamic trip planning where evacuees decide their route according to current road and traffic conditions. By translating this concept to an actual implementation, a traffic management center could identify current best travel routes between several origins and destinations, while continuing to update this list periodically. The model could suggest routings that favor either a user-optimal or system-optimal objective. This research also extended the concept of dynamic traffic assignment while modeling evacuation traffic. This extension includes the utilization of Wardrop\u27s System Optimum theory, where flow throughout the network is controlled in order to lower the risk of traffic congestion. Within this framework traffic flow is optimized to provide a route assignment under dynamic traffic conditions. This dissertation provides a practical and effective solution for a comprehensive evacuation analysis of a large, metropolitan area and the evacuation routes extending over 100 miles. Using the methodologies in this dissertation, we were able to create evacuation input data for general as well as special needs populations. These data were fed into the tailored simulation model to determine critical evacuation start times and evacuation windows for both the community-wide evacuation. Moreover, our analysis suggested that a hospital evacuation would need to precede a community-wide evacuation if the community-wide evacuation does not begin more than 24 hours before a hurricane landfall. To provide a more proactive approach, we further suggested a routing strategy, through a dynamic traffic assignment framework, for supporting an optimal flow of traffic during an evacuation. The dynamic traffic assignment approach also provides a mechanism for recommending specific time intervals when traffic should be diverted in order to reduce traffic congestion
    • 

    corecore