47 research outputs found

    Parallel Graph Decompositions Using Random Shifts

    Full text link
    We show an improved parallel algorithm for decomposing an undirected unweighted graph into small diameter pieces with a small fraction of the edges in between. These decompositions form critical subroutines in a number of graph algorithms. Our algorithm builds upon the shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]. By combining various stages of the previous algorithm, we obtain a significantly simpler algorithm with the same asymptotic guarantees as the best sequential algorithm

    Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers

    Full text link
    In this paper we provide an O(m(loglogn)O(1)log(1/ϵ))O(m (\log \log n)^{O(1)} \log(1/\epsilon))-expected time algorithm for solving Laplacian systems on nn-node mm-edge graphs, improving improving upon the previous best expected runtime of O(mlogn(loglogn)O(1)log(1/ϵ))O(m \sqrt{\log n} (\log \log n)^{O(1)} \log(1/\epsilon)) achieved by (Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu 2014). To obtain this result we provide efficient constructions of p\ell_p-stretch graph approximations with improved stretch and sparsity bounds. Additionally, as motivation for this work, we show that for every set of vectors in Rd\mathbb{R}^d (not just those induced by graphs) and all k>0k > 0 there exist an ultra-sparsifiers with d1+O(d/k)d-1 + O(d/k) re-weighted vectors of relative condition number at most k2k^2. For small kk, this improves upon the previous best known multiplicative factor of kO~(logd)k \cdot \tilde{O}(\log d), which is only known for the graph case.Comment: 52 pages, comments welcome

    Dynamic Low-Stretch Trees via Dynamic Low-Diameter Decompositions

    Full text link
    Spanning trees of low average stretch on the non-tree edges, as introduced by Alon et al. [SICOMP 1995], are a natural graph-theoretic object. In recent years, they have found significant applications in solvers for symmetric diagonally dominant (SDD) linear systems. In this work, we provide the first dynamic algorithm for maintaining such trees under edge insertions and deletions to the input graph. Our algorithm has update time n1/2+o(1) n^{1/2 + o(1)} and the average stretch of the maintained tree is no(1) n^{o(1)} , which matches the stretch in the seminal result of Alon et al. Similar to Alon et al., our dynamic low-stretch tree algorithm employs a dynamic hierarchy of low-diameter decompositions (LDDs). As a major building block we use a dynamic LDD that we obtain by adapting the random-shift clustering of Miller et al. [SPAA 2013] to the dynamic setting. The major technical challenge in our approach is to control the propagation of updates within our hierarchy of LDDs: each update to one level of the hierarchy could potentially induce several insertions and deletions to the next level of the hierarchy. We achieve this goal by a sophisticated amortization approach. We believe that the dynamic random-shift clustering might be useful for independent applications. One of these applications is the dynamic spanner problem. By combining the random-shift clustering with the recent spanner construction of Elkin and Neiman [SODA 2017]. We obtain a fully dynamic algorithm for maintaining a spanner of stretch 2k1 2k - 1 and size O(n1+1/klogn) O (n^{1 + 1/k} \log{n}) with amortized update time O(klog2n) O (k \log^2 n) for any integer 2klogn 2 \leq k \leq \log n . Compared to the state-of-the art in this regime [Baswana et al. TALG '12], we improve upon the size of the spanner and the update time by a factor of k k .Comment: To be presented at the 51st Annual ACM Symposium on the Theory of Computing (STOC 2019); abstract shortened to respect the arXiv limit of 1920 character

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    Distributed algorithms for low stretch spanning trees

    Get PDF
    Given an undirected graph with integer edge lengths, we study the problem of approximating the distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a distributed algorithm in the CONGEST model of computation that constructs a random spanning tree with the guarantee that the expected stretch of every edge is O(log3 n), where n is the number of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal. In the weighted case, the run-time of our algorithm matches the currently best known bound for exact distance computations, i.e., Õ(min{√nD, √nD1/4 + n3/5 + D}). We stress that this is the first distributed construction of spanning trees leading to poly-logarithmic expected stretch with non-trivial running time

    Improved Parallel Algorithms for Spanners and Hopsets

    Full text link
    We use exponential start time clustering to design faster and more work-efficient parallel graph algorithms involving distances. Previous algorithms usually rely on graph decomposition routines with strict restrictions on the diameters of the decomposed pieces. We weaken these bounds in favor of stronger local probabilistic guarantees. This allows more direct analyses of the overall process, giving: * Linear work parallel algorithms that construct spanners with O(k)O(k) stretch and size O(n1+1/k)O(n^{1+1/k}) in unweighted graphs, and size O(n1+1/klogk)O(n^{1+1/k} \log k) in weighted graphs. * Hopsets that lead to the first parallel algorithm for approximating shortest paths in undirected graphs with O(m  polylog  n)O(m\;\mathrm{polylog}\;n) work

    Almost Universally Optimal Distributed Laplacian Solvers via Low-Congestion Shortcuts

    Get PDF
    In this paper, we refine the (almost) existentially optimal distributed Laplacian solver recently developed by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS `21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n-node graph with shortcut quality SQ(G) can be solved after n^{o(1)} SQ(G) log(1/?) rounds, where ? is the required accuracy. This almost matches our lower bound that guarantees that any correct algorithm on G requires ??(SQ(G)) rounds, even for a crude solution with ? ? 1/2. Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that terminates in D ? n^{o(1)} log(1/?) rounds, where D is the hop-diameter of the network; as well as n^{o(1)} log (1/?)-round algorithms for the case of SQ(G) ? n^{o(1)}, which holds for most networks of interest. Conditioned on improvements in state-of-the-art constructions of low-congestion shortcuts, the CONGEST results will match the Supported-CONGEST ones. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique (NCC) model. In this model, we show the existence of a Laplacian solver with round complexity n^{o(1)} log(1/?). The unifying thread of these results, and our main technical contribution, is the study of a novel ?-congested generalization of the standard part-wise aggregation problem. We develop near-optimal algorithms for this primitive in the Supported-CONGEST model, almost-optimal algorithms in (standard) CONGEST (with the additional overhead due to standard barriers), as well as a simple algorithm for bounded-treewidth graphs with a quadratic dependence on the congestion ?. This primitive can be readily used to accelerate the Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye, and we believe it will find further independent applications in the future
    corecore